Skip to main content
Log in

Assembly of WO3 nanosheets/Bi24O31Br10 nanosheets composites with superior photocatalytic activity for degradation of tetracycline hydrochloride

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a high-performance composite photocatalyst composed of WO3 nanosheets and Bi24O31Br10 nanosheets was successfully synthesized. The photocatalytic activity of the obtained samples was studied by the degradation of tetracycline hydrochloride under visible light irradiation. The results showed that Bi24O31Br10 modified with the appropriate amount of WO3 nanosheet exhibits higher catalytic activity and stability during the photocatalytic processes, and the holes (h+) is involved in the photolysis reaction as the main active species. The crystallization, morphology, optical and electrochemical properties of the as-prepared composite photocatalyst were characterized, and the mechanism of high photocatalytic activity was also explored. The optimal sample (10%-WO3/Bi24O31Br10) exhibited the best performance for tetracycline hydrochloride (TC) degradation, and more than 80% of the TC was degraded after 60 min under light irradiation. The degradation rate constant k was about 3.34-fold and 1.54-fold higher than pure WO3 and Bi24O31Br10, respectively. Its high photocatalytic performance can be attributed to the following reasons: the appropriate conduction band and valence band positions between WO3 and Bi24O31Br10, the close contact between the two visible light-driven photocatalysts, and the effective separation of the spatial charge. Our work may help to further expand the potential application of oxygen-rich bismuth oxyhalides photocatalyst in wastewater treatment, and provide a new strategy for the modification of nanostructured photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Schwarzenbach RP, Egli T, Hofstetter TB, Gunten UV, Wehrli B (2010) Global water pollution and human health. Annu Rev Environ Resour 35:109–136

    Article  Google Scholar 

  2. Kümmerer K (2009) Antibiotics in the aquatic environment—a review—part I. Chemosphere 75:417–434

    Article  Google Scholar 

  3. Jiang L, Hu XL, Yin DQ, Zhang HC, Yu ZY (2011) Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China. Chemosphere 82:822–828

    Article  CAS  Google Scholar 

  4. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R (2009) Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A Gen 359:25–40

    Article  CAS  Google Scholar 

  5. Cheng NY, Tian JQ, Liu Q, Ge CJ, Qusti AH, Asiri AM, Al-Youbi AO, Sun XP (2013) Au-nanoparticle-loaded graphitic carbon nitride nanosheets: green photocatalytic synthesis and application toward the degradation of organic pollutants. ACS Appl Mater Interfaces 5:6815–6819

    Article  CAS  Google Scholar 

  6. Li K, Gao SM, Wang QY, Xu H, Wang ZY, Huang BB, Dai Y, Lu J (2015) In-situ-reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl Mater Interfaces 7:9023–9030

    Article  CAS  Google Scholar 

  7. Dong SY, Cui YR, Wang YF, Li YK, Hu LM, Su JY, Sun JH (2014) Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chem Eng J 249:102–110

    Article  CAS  Google Scholar 

  8. Yu CL, Zhou WQ, Zhu LH, Li G, Yang K, Jin RC (2016) Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl Catal B Environ 184:1–11

    Article  CAS  Google Scholar 

  9. Yu Z, Yin B, Qu FY, Wu X (2014) Synthesis of self-assembled CdS nanospheres and their photocatalytic activities by photodegradation of organic dye molecules. Chem Eng J 258:203–209

    Article  CAS  Google Scholar 

  10. Mano T, Nishimoto S, Kameshima Y, Miyake M (2015) Water treatment efficacy of various metal oxide semiconductors for photocatalytic ozonation under UV and visible light irradiation. Chem Eng J 264:221–229

    Article  CAS  Google Scholar 

  11. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425

    Article  CAS  Google Scholar 

  12. Chen CC, Ma WH, Zhao JC (2010) Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev 39:4206–4219

    Article  CAS  Google Scholar 

  13. Li SH, Liu SQ, Colmenares JC, Xu YJ (2016) A sustainable approach for lignin valorization by heterogeneous photocatalysis. Green Chem 18:594–607

    Article  Google Scholar 

  14. Jiang DL, Li J, Xing CS, Zhang ZY, Meng SC, Chen M (2015) Two-dimensional CaIn2S4/g-C3N4 heterojunction nanocomposite with enhanced visible-light photocatalytic activities: interfacial engineering and mechanism insight. ACS Appl Mater Interfaces 7:19234–19242

    Article  CAS  Google Scholar 

  15. Wang MG, Hu YM, Han J, Guo R, Xiong HX, Yin YD (2015) TiO2/NiO hybrid shells: p–n junction photocatalysts with enhanced activity under visible light. J Mater Chem A 3:20727–20735

    Article  CAS  Google Scholar 

  16. Zhang YC, Yao L, Zhang GS, Dionysiou DD, Li J, Du XH (2014) One-step hydrothermal synthesis of high-performance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr(VI). Appl Catal B Environ 144:730–738

    Article  CAS  Google Scholar 

  17. Jiang DL, Chen LL, Zhu JJ, Chen M, Shi WD, Xie JM (2013) Novel p–n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. Dalton Trans 42:15726–15734

    Article  CAS  Google Scholar 

  18. Wetchakun N, Chaiwichain S, Inceesungvorn B, Pingmuang K, Phanichphant S, Minett AI, Chen J (2012) BiVO4/CeO2 nanocomposites with high visible-light-induced photocatalytic activity. ACS Appl Mater Interfaces 4:3718–3723

    Article  CAS  Google Scholar 

  19. Zhang ZY, Jiang DL, He MQ, Chen M (2016) Construction of SnNb2O6 nanosheet/g-C3N4 nanosheet two-dimensional heterostructures with improved photocatalytic activity: synergistic effect and mechanism insight. Appl Catal B Environ 183:113–123

    Article  CAS  Google Scholar 

  20. Ao YH, Wang KD, Wang PF, Wang C, Hou J (2016) Fabrication of novel p–n heterojunction BiOI/La2Ti2O7 composite photocatalysts for enhanced photocatalytic performance under visible light irradiation. Dalton Trans 45:7986–7997

    Article  CAS  Google Scholar 

  21. Sun LM, Zhao X, Jia CJ, Zhou YX, Cheng XF, Li P, Liu L, Fan WL (2012) Enhanced visible-light photocatalytic activity of g-C3N4–ZnWO4 by fabricating a heterojunction: investigation based on experimental and theoretical studies. J Mater Chem 22:23428–23438

    Article  CAS  Google Scholar 

  22. Xu XX, Liu G, Randorn C, Irvine JTS (2011) g-C3N4 coated SrTiO3 as an efficient photocatalyst for H2 production in aqueous solution under visible light irradiation. Int J Hydrog Energy 36:13501–13507

    Article  CAS  Google Scholar 

  23. Chen HM, Xie YH, Sun XQ, Lv ML, Wu FF, Zhang L, Li L, Xu XX (2015) Efficient charge separation based on type-II g-C3N4/TiO2-B nanowire/tube heterostructure photocatalysts. Dalton Trans 44:13030–13039

    Article  CAS  Google Scholar 

  24. Hua EB, Liu G, Zhang G, Xu XX (2018) In situ fabrication of two-dimensional g-C3N4/Ba5Ta4O15 nanosheet heterostructures with efficient charge separations and photocatalytic hydrogen evolution under visible light illumination. Dalton Trans 47:4360–4367

    Article  CAS  Google Scholar 

  25. Lv ML, Sun XQ, Wei SH, Shen C, Mi YL, Xu XX (2017) Ultrathin lanthanum tantalate perovskite nanosheets modified by nitrogen doping for efficient photocatalytic water splitting. ACS Nano 11:11441–11448

    Article  CAS  Google Scholar 

  26. Sun XQ, Mi YL, Jiao F, Xu XX (2018) Activating layered perovskite compound Sr2TiO4 via La/N codoping for visible light photocatalytic water splitting. ACS Catal 8:3209–3221

    Article  CAS  Google Scholar 

  27. Wei SH, Xu XX (2018) Boosting photocatalytic water oxidation reactions over strontium tantalum oxynitride by structural laminations. Appl Catal B Environ 228:10–18

    Article  CAS  Google Scholar 

  28. Jiang L, Ni S, Liu G, Xu XX (2017) Photocatalytic hydrogen production over Aurivillius compound Bi3TiNbO9 and its modifications by Cr/Nb co-doping. Appl Catal B Environ 217:342–352

    Article  CAS  Google Scholar 

  29. Lu LW, Lv ML, Wang D, Liu G, Xu XX (2017) Efficient photocatalytic hydrogen production over solid solutions Sr1-xBixTi1-xFexO3 (0 ≤ x ≤ 0.5). Appl Catal B Environ 200:412–419

    Article  CAS  Google Scholar 

  30. Zhang KL, Liu CM, Huang FQ, Zheng C, Wang WD (2006) Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl Catal B Environ 68:125–129

    Article  CAS  Google Scholar 

  31. Shang M, Wang WZ, Zhang L (2009) Preparation of BiOBr lamellar structure with high photocatalytic activity by CTAB as Br source and template. J Hazard Mater 167:803–809

    Article  CAS  Google Scholar 

  32. Xiao X, Zhang WD (2010) Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity. J Mater Chem 20:5866–5870

    Article  CAS  Google Scholar 

  33. Zhang J, Shi FJ, Lin J, Chen DF, Gao JM, Huang ZX, Ding XX, Tang CC (2008) Self-assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst. Chem Mater 20:2937–2941

    Article  CAS  Google Scholar 

  34. Huo YN, Zhang J, Miao M, Jin Y (2012) Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances. Appl Catal B Environ 111:334–341

    Article  Google Scholar 

  35. Wang JW, Li YD (2003) Synthesis of single-crystalline nanobelts of ternary bismuth oxide bromide with different compositions. Chem Commun 18:2320–2321

    Article  Google Scholar 

  36. Zhang X, Zhang LZ (2010) Electronic and band structure tuning of ternary semiconductor photocatalysts by self doping: the case of BiOI. J Phys Chem C 114:18198–18206

    Article  CAS  Google Scholar 

  37. Xiao X, Liu C, Hu RP, Zuo XX, Nan JM, Li LS, Wang LS (2012) Oxygen-rich bismuth oxyhalides: generalized one-pot synthesis, band structures and visible-light photocatalytic properties. J Mater Chem 22:22840–22843

    Article  CAS  Google Scholar 

  38. Xiao X, Hu RP, Liu C, Xing CL, Zuo XX, Nan JM, Wang LS (2013) Facile microwave synthesis of novel hierarchical Bi24O31Br10 nanoflakes with excellent visible light photocatalytic performance for the degradation of tetracycline hydrochloride. Chem Eng J 225:790–797

    Article  CAS  Google Scholar 

  39. Eggenweiler U, Keller E, Krämer V (2000) Redetermination of the crystal structures of the ‘Arppe compound’ Bi24O31Cl10 and the isomorphous Bi24O31Br10. Acta Crystallogr B 56:431–437

    Article  Google Scholar 

  40. Rittner P, Oppermann H (1992) Zur calorimetrie der bismutoxidhalogenide. III bismutoxidiodide. Z Anorg Allg Chem 617:131–135

    Article  CAS  Google Scholar 

  41. Lou X, Shang J, Wang L, Feng HF, Hao WC, Wang TM, Du Y (2017) Enhanced photocatalytic activity of Bi24O31Br10: constructing heterojunction with BiOI. J Mater Sci Technol 33:281–284

    Article  Google Scholar 

  42. Peng Y, Yu PP, Chen QG, Zhou HY, Xu AW (2015) Facile fabrication of Bi12O17Br2/Bi24O31Br10 type II heterostructures with high visible photocatalytic activity. J Phys Chem C 119:13032–13040

    Article  CAS  Google Scholar 

  43. Liu ZS, Niu JN, Feng PZ, Sui YW, Zhu YB (2014) One-pot synthesis of Bi24O31Br10/Bi4V2O11 heterostructures and their photocatalytic properties. RSC Adv 4:43399–43405

    Article  CAS  Google Scholar 

  44. Zheng HD, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide–properties, synthesis, and applications. Adv Funct Mater 21:2175–2196

    Article  CAS  Google Scholar 

  45. Xie YP, Liu G, Yin LC, Cheng HM (2012) Crystal facet-dependent photocatalytic oxidation and reduction reactivity of monoclinic WO3 for solar energy conversion. J Mater Chem 22:6746–6751

    Article  CAS  Google Scholar 

  46. Zeng Q, Zhao Y, Zhao JZ, Hao XL, Lu Y, Guo JN, Song YH, Gao FF, Huang ZF (2013) Studies on fabrication of urchin-like WOH2O hollow spheres and their photocatalytic properties. Cryst Res Technol 48:334–343

    Article  CAS  Google Scholar 

  47. Rao PM, Cai LL, Liu C, Cho IS, Lee CH, Weisse JM, Yang PD, Zheng XL (2014) Simultaneously efficient light absorption and charge separation in WO3/BiVO4 core/shell nanowire photoanode for photoelectrochemical water oxidation. Nano Lett 14:1099–1105

    Article  CAS  Google Scholar 

  48. Wang CY, Zhang X, Qiu HB, Huang GX, Yu HQ (2017) Bi24O31Br10 nanosheets with controllable thickness for visible–light–driven catalytic degradation of tetracycline hydrochloride. Appl Catal B Environ 205:615–623

    Article  CAS  Google Scholar 

  49. Wang CY, Zhang X, Song XN, Wang WK, Yu HQ (2016) Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol a under visible-light irradiation. ACS Appl Mater Interfaces 8:5320–5326

    Article  Google Scholar 

  50. Wang JL, Yu Y, Zhang LZ (2013) Highly efficient photocatalytic removal of sodium pentachlorophenate with Bi3O4Br under visible light. Appl Catal B Environ 136:112–121

    Article  Google Scholar 

  51. Zhang Z, Yates JT Jr (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551

    Article  CAS  Google Scholar 

  52. Xu PT, Milstein TJ, Mallouk TE (2016) Flat-band potentials of molecularly thin metal oxide nanosheets. ACS Appl Mater Interfaces 8:11539–11547

    Article  CAS  Google Scholar 

  53. Zheng JY, Song G, Hong JS, Van TK, Pawar AU, Kim DY, Kim CW, Haider Z, Kang YS (2014) Facile fabrication of WO3 nanoplates thin films with dominant crystal facet of (002) for water splitting. Cryst Growth Des 14:6057–6066

    Article  CAS  Google Scholar 

  54. Jiang DL, Wang TY, Xu Q, Li D, Meng SC, Chen M (2017) Perovskite oxide ultrathin nanosheets/g-C3N4 2D-2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B Environ 201:617–628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the financial supports of National Nature Science Foundation of China (No. 21606111, 21576121 and 21406091), Natural Science Foundation of Jiangsu Province (BK20140530 and BK20150482), China Postdoctoral Science Foundation (2015M570409, 2017T110453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W., Ma, X., Li, D. et al. Assembly of WO3 nanosheets/Bi24O31Br10 nanosheets composites with superior photocatalytic activity for degradation of tetracycline hydrochloride. J Mater Sci 53, 15804–15816 (2018). https://doi.org/10.1007/s10853-018-2747-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2747-9

Keywords

Navigation