Skip to main content
Log in

Free volume characteristics on water permeation and salt rejection of polyamide reverse osmosis membranes investigated by a pulsed slow positron beam

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polyamide thin film composite reverse osmosis membranes on porous polysulfone support were prepared using m-phenylenediamine, trimesoyl chloride and dimethyl sulfoxide (DMSO) with various contents as precursors via an interfacial polymerization. The membrane with heterogeneous multilayer structure was depth-profiled by positron annihilation lifetime spectroscopy based on a pulsed slow positron beam and the thickness of the polyamide active layer can be estimated through fitting the results of depth dependence of o-Ps intensity. The free volume characteristics in the polyamide selective layer of the membranes were evaluated and were correlated with the permeation properties. With increasing DMSO content, mean free volume size (VFV) was enlarged, which was responsible for the enhanced water and sodium chloride permeation. However, the salt rejection was significantly decreased with a slight increase in the VFV around a critical value of 88.0 Å3, which was the average size of hydrated sodium and chloride ions. It was well interpreted for that the broadened free volume distribution enables an amount of larger free volumes to be involved in the salt permeation, although little change in VFV was found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Cadotte JE, Petersen RJ, Larson RE, Erickson EE (1980) A new thin-film composite seawater reverse osmosis membrane. Desalination 32:25–31

    Article  Google Scholar 

  2. Xu GR, Xu JM, Feng HJ, Zhao HL, Wu SB (2017) Tailoring structures and performance of polyamide thin film composite (PA-TFC) desalination membranes via sublayers adjustment—a review. Desalination 417:19–35

    Article  CAS  Google Scholar 

  3. Liu Q, Xu G-R (2016) Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes. Desalination 394:162–175

    Article  CAS  Google Scholar 

  4. Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD (2017) Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:0530

    Article  Google Scholar 

  5. Stevens DM, Shu JY, Reichert M, Roy A (2017) Next-generation nanoporous materials: progress and prospects for reverse osmosis and nanofiltration. Ind Eng Chem Res 56:10526–10551

    Article  CAS  Google Scholar 

  6. Yang H, Wu H, Yao Z, Shi B, Xu Z, Cheng X, Pan F, Liu G et al (2018) Functionally graded membranes from nanoporous covalent organic frameworks for highly selective water permeation. J Mater Chem A 6:583–591

    Article  CAS  Google Scholar 

  7. Shi Y, Li C, He D, Shen L, Bao N (2017) Preparation of graphene oxide–cellulose acetate nanocomposite membrane for high-flux desalination. J Mater Sci 52:13296–13306. https://doi.org/10.1007/s10853-017-1403-0

    Article  CAS  Google Scholar 

  8. Zhao L, Chang PCY, Ho WSW (2013) High-flux reverse osmosis membranes incorporated with hydrophilic additives for brackish water desalination. Desalination 308:225–232

    Article  CAS  Google Scholar 

  9. Tung KL, Jean YC, Nanda D, Lee KR, Hung WS, Lo CH, Lai JY (2009) Characterization of multilayer nanofiltration membranes using positron annihilation spectroscopy. J Membr Sci 343:147–156

    Article  CAS  Google Scholar 

  10. Hung WS, De Guzman M, Huang SH, Lee KR, Jean YC, Lai JY (2010) Characterizing free volumes and layer structures in asymmetric thin-film polymeric membranes in the wet condition using the variable monoenergy slow positron beam. Macromolecules 43:6127–6134

    Article  CAS  Google Scholar 

  11. Wei T, Zhang L, Zhao H, Ma H, Sajib MS, Jiang H, Murad S (2016) Aromatic polyamide reverse-osmosis membrane: an atomistic molecular dynamics simulation. J Phys Chem B 120:10311–10318

    Article  CAS  Google Scholar 

  12. Mao W, Xiong B, Liu Y, He C (2013) Correlation between defects and conductivity of Sb-doped tin oxide thin films. Appl Phys Lett 103:031915

    Article  Google Scholar 

  13. Ohrt C, Rätzke K, Oshima N, Kobayashi Y, O’Rourke BE, Suzuki R, Uedono A, Faupel F (2015) Free volume profiles at polymer–solid interfaces probed by focused slow positron beam. Macromolecules 48:1493–1498

    Article  CAS  Google Scholar 

  14. Yin C, Wang L, Li J, Zhou Y, Zhang H, Fang P, He C (2017) Positron annihilation characteristics, water uptake and proton conductivity of composite Nafion membranes. Phys Chem Chem Phys 19:15953–15961

    Article  CAS  Google Scholar 

  15. Xia R, Cao X, Gao M, Zhang P, Zeng M, Wang B, Wei L (2017) Probing sub-nano level molecular packing and correlated positron annihilation characteristics of ionic cross-linked chitosan membranes using positron annihilation spectroscopy. Phys Chem Chem Phys 19:3616–3626

    Article  CAS  Google Scholar 

  16. Fu YJ, Lai CL, Hu CC, Sun YM, Wu SY, Chen JT, Huang SH, Hung WS et al (2016) Extraordinary transport behavior of gases in isothermally annealed poly(4-methyl-1-pentene) membranes. J Polym Sci, Part B: Polym Phys 54:2368–2376

    Article  CAS  Google Scholar 

  17. Yin C, Li J, Zhou Y, Zhang H, Fang P, He C (2018) Enhancement in proton conductivity and thermal stability in nafion membranes induced by incorporation of sulfonated carbon nanotubes. ACS Appl Mater Interfaces 10:14026–14035

    Article  CAS  Google Scholar 

  18. Ravikumar HB, Ranganathaiah C, Kumaraswamy GN, Siddaramaiah (2005) Influence of free volume on the mechanical properties of epoxy/poly (methylmethacrylate) blends. J Mater Sci 40:6523–6527. https://doi.org/10.1007/s10853-005-1707-3

    Article  CAS  Google Scholar 

  19. Yin C, Li J, Zhou Y, Zhang H, Fang P, He C (2018) Phase separation and development of proton transport pathways in metal oxide nanoparticle/nafion composite membranes during water uptake. J Phys Chem C 122:9710–9717

    Article  CAS  Google Scholar 

  20. Tang X, Xiong B, Li Q, Mao W, Xiao W, Fang P, He C (2015) Development of pore interconnectivity/morphology in porous silica films investigated by cyclic voltammetry and slow positron annihilation spectroscopy. Electrochim Acta 168:365–369

    Article  CAS  Google Scholar 

  21. He C, Wang S, Kobayashi Y, Ohdaira T, Suzuki R (2012) Role of pore morphology in positronium diffusion in mesoporous silica thin films and in positronium emission from the surfaces. Phys Rev B 86:075415

    Article  Google Scholar 

  22. Japip S, Wang H, Xiao Y, Shung Chung T (2014) Highly permeable zeolitic imidazolate framework (ZIF)-71 nano-particles enhanced polyimide membranes for gas separation. J Membr Sci 467:162–174

    Article  CAS  Google Scholar 

  23. Chen Z, Ito K, Yanagishita H, Oshima N, Suzuki R, Kobayashi Y (2011) Correlation study between free-volume holes and molecular separations of composite membranes for reverse osmosis processes by means of variable-energy positron annihilation techniques. J Phys Chem C 115:18055–18060

    Article  CAS  Google Scholar 

  24. Fujioka T, Oshima N, Suzuki R, Price WE, Nghiem LD (2015) Probing the internal structure of reverse osmosis membranes by positron annihilation spectroscopy: gaining more insight into the transport of water and small solutes. J Membr Sci 486:106–118

    Article  CAS  Google Scholar 

  25. Fujioka T, Oshima N, Suzuki R, Khan SJ, Roux A, Poussade Y, Drewes JE, Nghiem LD (2013) Rejection of small and uncharged chemicals of emerging concern by reverse osmosis membranes: the role of free volume space within the active skin layer. Sep Purif Technol 116:426–432

    Article  CAS  Google Scholar 

  26. Albo J, Hagiwara H, Yanagishita H, Ito K, Tsuru T (2014) Structural characterization of thin-film polyamide reverse osmosis membranes. Ind Eng Chem Res 53:1442–1451

    Article  CAS  Google Scholar 

  27. Kim SH, Kwak SY, Suzuki T (2005) Positron annihilation spectroscopic evidence to demonstrate the flux-enhancement mechanism in morphology-controlled thin-film-composite (TFC) membrane. Environ Sci Technol 39:1764–1770

    Article  CAS  Google Scholar 

  28. Kim SJ, Kook S, O’Rourke BE, Lee J, Hwang M, Kobayashi Y, Suzuki R, Kim IS (2017) Characterization of pore size distribution (PSD) in cellulose triacetate (CTA) and polyamide (PA) thin active layers by positron annihilation lifetime spectroscopy (PALS) and fractional rejection (FR) method. J Membr Sci 527:143–151

    Article  CAS  Google Scholar 

  29. Shen L, Zhang X, Zuo J, Wang Y (2017) Performance enhancement of TFC FO membranes with polyethyleneimine modification and post-treatment. J Membr Sci 534:46–58

    Article  CAS  Google Scholar 

  30. Zhang S, Zhang R, Jean YC, Paul DR, Chung T-S (2012) Cellulose esters for forward osmosis: characterization of water and salt transport properties and free volume. Polymer 53:2664–2672

    Article  CAS  Google Scholar 

  31. Li X, Chung TS (2013) Effects of free volume in thin-film composite membranes on osmotic power generation. AIChE J 59:4749–4761

    Article  CAS  Google Scholar 

  32. Shi GM, Chen H, Jean YC, Chung TS (2013) Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer 54:774–783

    Article  CAS  Google Scholar 

  33. Fan JJ, Zhou W, Wang Q, Chu ZJ, Yang LQ, Yang L, Sun J, Zhao L et al (2018) Structure dependence of water vapor permeation in polymer nanocomposite membranes investigated by positron annihilation lifetime spectroscopy. J Membr Sci 549:581–587

    Article  CAS  Google Scholar 

  34. Tao SJ (1972) Positronium annihilation in molecular substances. J Chem Phys 56:5499–5510

    Article  CAS  Google Scholar 

  35. Eldrup M, Lightbody D, Sherwood JN (1981) The temperature dependence of positron lifetimes in solid pivalic acid. Chem Phys 63:51–58

    Article  CAS  Google Scholar 

  36. Consolati G, Panzarasa G, Quasso F (2018) Morphology of free volume holes in an amorphous polyether-polyester polyurethane of biomedical interest. Polym Test 68:208–212

    Article  CAS  Google Scholar 

  37. Chen H, Hung WS, Lo C-H, Huang SH, Cheng ML, Liu G, Lee KR, Lai JY et al (2007) Free-volume depth profile of polymeric membranes studied by positron annihilation spectroscopy: layer structure from interfacial polymerization. Macromolecules 40:7542–7557

    Article  CAS  Google Scholar 

  38. Geise GM, Paul DR, Freeman BD (2014) Fundamental water and salt transport properties of polymeric materials. Prog Polym Sci 39:1–42

    Article  CAS  Google Scholar 

  39. Helfer F, Lemckert C, Anissimov YG (2014) Osmotic power with pressure retarded osmosis: theory, performance and trends—a review. J Membr Sci 453:337–358

    Article  CAS  Google Scholar 

  40. Li X, Zhang S, Fu F, Chung T-S (2013) Deformation and reinforcement of thin-film composite (TFC) polyamide-imide (PAI) membranes for osmotic power generation. J Membr Sci 434:204–217

    Article  CAS  Google Scholar 

  41. Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG (2014) Molecular separation with organic solvent nanofiltration: a critical review. Chem Rev 114:10735–10806

    Article  CAS  Google Scholar 

  42. Kirkegaard P, Eldrup M, Mogensen OE, Pedersen NJ (1981) Program system for analysing positron lifetime spectra and angular correlation curves. Comput Phys Commun 23:307–335

    Article  CAS  Google Scholar 

  43. Provencher SW (1982) CONTIN: a general purpose constrained regularization program for inverting noisy linear algebraic and integral equations. Comput Phys Commun 27:229–242

    Article  Google Scholar 

  44. Gregory RB, Zhu Y (1990) Analysis of positron annihilation lifetime data by numerical laplace inversion with the program CONTIN. Nucl Instrum Methods Phys Res, Sect A 290:172–182

    Article  Google Scholar 

  45. Kobayashi Y, Ito K, Oka T, He C, Mohamed HFM, Suzuki R, Ohdaira T (2008) Application of positron beams to the study of positronium-forming solids. Appl Surf Sci 255:174–178

    Article  CAS  Google Scholar 

  46. Shantarovich VP, Bekeshev VG, Belov NA, Ronova IA, Nikolaev AY, Gustov VW, Kevdina IB, Filimonov MK (2016) Effect of supercritical carbon dioxide on nanoporous polyhexafluoropropylene. High Energy Chem 50:287–291

    Article  CAS  Google Scholar 

  47. Shantarovich VP, Bekeshev VG, Pastukhov AV, Davankov VA, Krasil’nikova OK, Belousova EV, Kevdina IB, Filimonov MK et al (2015) When some elementary free volumes in polymers are not seen by positron annihilation experiments. J Phys: Conf Ser 618:012021–012026

    Google Scholar 

  48. Xie W, Ju H, Geise GM, Freeman BD, Mardel JI, Hill AJ, McGrath JE (2011) Effect of free volume on water and salt transport properties in directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Macromolecules 44:4428–4438

    Article  CAS  Google Scholar 

  49. David F, Vokhmin V, Ionova G (2001) Water characteristics depend on the ionic environment. Thermodynamics and modelisation of the aquo ions. J Mol Liq 90:45–62

    Article  CAS  Google Scholar 

  50. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169

    Article  CAS  Google Scholar 

  51. Patil PN, Roilo D, Brusa RS, Miotello A, Aghion S, Ferragut R, Checchetto R (2016) Free volumes and gas transport in polymers: amine-modified epoxy resins as a case study. Phys Chem Chem Phys 18:3817–3824

    Article  CAS  Google Scholar 

  52. Kobayashi Y, Kazama S, Inoue K, Toyama T, Nagai Y, Haraya K, Mohamed HF, O’Rouke BE et al (2014) Positron annihilation in cardo-based polymer membranes. J Phys Chem B 118:6007–6014

    Article  CAS  Google Scholar 

  53. Mohamed HFM, Abdel-Hady EE, Ohira A (2015) Per-fluorinated sulfonic acid/PTFE copolymer studied by positron annihilation lifetime and gas permeation techniques. J Phys: Conf Ser 618:012031–012034

    Google Scholar 

  54. Pendergast MM, Ghosh AK, Hoek EMV (2013) Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 308:180–185

    Article  CAS  Google Scholar 

  55. Peng F, Jiang Z, Hoek EMV (2011) Tuning the molecular structure, separation performance and interfacial properties of poly(vinyl alcohol)–polysulfone interfacial composite membranes. J Membr Sci 368:26–33

    Article  CAS  Google Scholar 

  56. Jean YC, Hung WS, Lo CH, Chen H, Liu G, Chakka L, Cheng ML, Nanda D et al (2008) Applications of positron annihilation spectroscopy to polymeric membranes. Desalination 234:89–98

    Article  CAS  Google Scholar 

  57. Liu J, Jean YC, Yang H (1995) Free-volume hole properties of polymer blends probed by positron annihilation spectroscopy: miscibility. Macromolecules 28:5774–5779

    Article  CAS  Google Scholar 

  58. Deng Q, Jean YC (1993) Free-volume distributions of an epoxy polymer probed by positron annihilation: pressure dependence. Macromolecules 26:30–34

    Article  CAS  Google Scholar 

  59. Zhou J, Lu X, Wang Y, Shi J (2002) Molecular dynamics study on ionic hydration. Fluid Phase Equilib 194–197:257–270

    Article  Google Scholar 

  60. Singh PS, Ray P, Xie Z, Hoang M (2012) Synchrotron SAXS to probe cross-linked network of polyamide ‘reverse osmosis’ and ‘nanofiltration’ membranes. J Membr Sci 421–422:51–59

    Article  Google Scholar 

  61. Ding M, Szymczyk A, Goujon F, Soldera A, Ghoufi A (2014) Structure and dynamics of water confined in a polyamide reverse-osmosis membrane: a molecular-simulation study. J Membr Sci 458:236–244

    Article  CAS  Google Scholar 

  62. Kou J, Zhou X, Lu H, Wu F, Fan J (2014) Graphyne as the membrane for water desalination. Nanoscale 6:1865–1870

    Article  CAS  Google Scholar 

  63. Wang J, Kingsbury RS, Perry LA, Coronell O (2017) Partitioning of alkali metal salts and boric acid from aqueous phase into the polyamide active layers of reverse osmosis membranes. Environ Sci Technol 51:2295–2303

    Article  CAS  Google Scholar 

  64. Dlubek G, Redmann F, Krause-Rehberg R (2002) Humidity-induced plasticization and antiplasticization of polyamide 6: a positron lifetime study of the local free volume. J Appl Polym Sci 84:244–255

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by the National Natural Science Foundation of China (NSFC) (Grants Nos. 11575130, 11705029 and 11575129), the Fundamental Research Funds for the Central Universities (No. 2042018kf0239) and Natural Science Foundation of Guangdong Province, China (No. 2017A030313038). We are grateful to Drs. B. E. O’Rourke, N. Oshima and K. Ito for their helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunqing He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Xiong, B., Yin, C. et al. Free volume characteristics on water permeation and salt rejection of polyamide reverse osmosis membranes investigated by a pulsed slow positron beam. J Mater Sci 53, 16132–16145 (2018). https://doi.org/10.1007/s10853-018-2740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2740-3

Keywords

Navigation