Skip to main content
Log in

Surface attachment of protonated polyimidazolium monolayer on titanate nanotubes as a novel proton conductor

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel proton conductor has been designed by the surface immobilization of protonated polyimidazolium monolayer on titanate nanotubes (TiNTs) through a polymer brush strategy. 2,2′-Azobis(2-methylpropionitrile) (AIBN)-type initiators are first attached to TiNTs followed by a free radical polymerization of protonated 1-vinylimidazole (VyImBF4) on the surface. The chemical structure of the resulting poly(VyImBF4)-modified TiNTs is verified by Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS). TGA curve indicates their good thermal stability. The maximum proton conductivity achieves 6.74 × 10−4 S cm−1 at 200 °C under dry condition and 3.60 × 10−2 S cm−1 at 120 °C under 100% humidity, respectively, when the polymerization is carried out under a polymerization time of 3 h and an immobilized initiator concentration of approximately 42.4 mmol L−1. The proposed preparation of poly(VyImBF4)-modified TiNTs would give a new idea for the design of other ion conductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Kim SY, Kim S, Park MJ (2010) Enhanced proton transport in nanostructured polymer electrolyte/ionic liquid membranes under water-free conditions. Nat Commun 1:88

    Article  Google Scholar 

  2. Goswami S, Dutta A (2013) Conductivity studies of plasticized proton conducting PVA-PVIM blend doped with NH4BF4. Ionics 19:1125–1134

    Article  CAS  Google Scholar 

  3. Zhang H, Shen PK (2012) Advances in the high performance polymer electrolyte membranes for fuel cells. Chem Soc Rev 41:2382–2394

    Article  CAS  Google Scholar 

  4. Wu HY, Saikia D, Lin CP, Wu FS, Fey GTK, Kao HM (2010) Synthesis, structure characterization and ionic conductivity of star-branched organic-inorganic hybrid electrolytes based on cyanuric chloride, diamine-capped poly(oxyalkylene) and alkoxysilane. Polymer 51:4351–4361

    Article  CAS  Google Scholar 

  5. Druger SD, Nitzan A, Ratner MA (1983) Dynamic bond percolation theory: a microscopic model for diffusion in dynamically disordered systems. I Definition and one-dimensional case. J Chem Phys 79:3133–3142

    Article  CAS  Google Scholar 

  6. He R, Kyu T (2016) Effect of plasticization on ionic conductivity enhancement in relation to glass transition temperature of crosslinked polymer electrolyte membranes. Macromolecules 49:5637–5648

    Article  CAS  Google Scholar 

  7. Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ion 178:885–888

    Article  CAS  Google Scholar 

  8. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15:2740–2745

    Article  CAS  Google Scholar 

  9. Li K, Ye G, Pan J, Zhang H, Pan M (2010) Self-assembled Nafion®/metal oxide nanoparticles hybrid proton exchange membranes. J Membr Sci 347:26–31

    Article  CAS  Google Scholar 

  10. Han H, Li HQ, Liu M, Xu L, Xu J, Wang S, Ni H, Wang Z (2017) Effect of “bridge” on the performance of organic-inorganic crosslinked hybrid proton exchange membranes via KH550. J Power Sources 340:126–138

    Article  CAS  Google Scholar 

  11. Amiinu IS, Li W, Wang G, Tu Z, Tang H, Pan M, Zhang H (2015) Toward anhydrous proton conductivity based on imidazole functionalized mesoporous silica/Nafion composite membranes. Electrochim Acta 160:185–194

    Article  CAS  Google Scholar 

  12. Jalani NH, Dunn K, Datta R (2005) Synthesis and characterization of Nafion®-MO2 (M = Zr, Si, Ti) nanoparticle membranes for higher temperature PEM fuel cells. Electrochim Acta 51:553–560

    Article  CAS  Google Scholar 

  13. Li Q, Xiao C, Li W, Zhang H, Chen F, Fang P, Pan M (2010) Enhanced proton conductivity of polymer electrolyte membrane doped with titanate nanotubes. Colloid Polym Sci 288:1369–1374

    Article  CAS  Google Scholar 

  14. Yamada M, Wei M, Honma I, Zhou H (2006) One-dimensional proton conductor under high vapor pressure condition employing titanate nanotube. Electrochem Commun 8:1549–1552

    Article  CAS  Google Scholar 

  15. Li Q, Xiao C, Zhang H, Chen F, Fang P, Pan M (2011) Polymer electrolyte membranes containing titanate nanotubes for elevated temperature fuel cells under low relative humidity. J Power Sources 196:8250–8256

    Article  CAS  Google Scholar 

  16. Jothi PR, Dharmalingam S (2014) An efficient proton conducting electrolyte membrane for high temperature fuel cell in aqueous-free medium. J Membr Sci 450:389–396

    Article  CAS  Google Scholar 

  17. Kreuer KD, Fuchs A, Ise M, Spaeth M, Maier J (1998) Imidazole and pyrazole-based proton conducting polymers and liquids. Electrochim Acta 43:1281–1288

    Article  CAS  Google Scholar 

  18. Mamlouk M, Ocon P, Scott K (2014) Preparation and characterization of polybenzimidazole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. J Power Source 245:915–926

    Article  CAS  Google Scholar 

  19. Erdemi H, Akbey Ü, Meyer WH (2010) Conductivity behavior and solid state NMR investigation of imidazolium-based polymeric ionic liquids. Solid State Ion 181:1586–1595

    Article  CAS  Google Scholar 

  20. Scharfenberger G, Meyer WH, Wegner G, Schuster M, Kreuer KD, Maier J (2006) Anhydrous polymeric proton conductors based on imidazole functionalized polysiloxane. Fuel Cells 6:237–250

    Article  CAS  Google Scholar 

  21. Díaz M, Ortiz A, Ortiz I (2014) Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J Membr Sci 469:379–396

    Article  Google Scholar 

  22. Evans CM, Sanoja GE, Popere BC, Segalman RA (2016) Anhydrous proton transport in polymerized ionic liquid block copolymers: roles of block length, ionic content, and confinement. Macromolecules 49:395–404

    Article  CAS  Google Scholar 

  23. Fan F, Wang Y, Hong T, Heres MF, Saito T, Sokolov AP (2015) Ion conduction in polymerized ionic liquids with different pendant groups. Macromolecules 48:4461–4470

    Article  CAS  Google Scholar 

  24. Schneider Y, Modestino MA, McCulloch BL, Hoarfrost ML, Hess RW, Segalman RA (2013) Ionic conduction in nanostructured membranes based on polymerized protic ionic liquids. Macromolecules 46:1543–1548

    Article  CAS  Google Scholar 

  25. Feng J, Huang Y, Tu Z, Zhang H, Pan M, Tang H (2014) Proton conduction of polyAMPS brushes on titanate nanotubes. Sci Rep 4:6225

    Article  Google Scholar 

  26. Prucker O, Ruhe J (1998) Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of azo initiators. Macromolecules 31:592–601

    Article  CAS  Google Scholar 

  27. Zhang H, Ruhe J (2005) Swelling of poly(methacrylic acid) brushes: influence of monovalent salts in the environment. Macromolecules 38:4855–4860

    Article  CAS  Google Scholar 

  28. Hirao M, Ito K, Ohno H (2000) Preparation and polymerization of new organic molten salts; N-alkylimidazolium salt derivatives. Electrochim Acta 45:1291–1294

    Article  CAS  Google Scholar 

  29. Sun X, Li Y (2003) Synthesis and characterization of ion-exchangeable titanate nanotubes. Chem Eur J 9:2229–2238

    Article  CAS  Google Scholar 

  30. Ye Y, Elabd YA (2011) Anion exchanged polymerized ionic liquids: high free volume single ion conductors. Polymer 52:1309–1317

    Article  CAS  Google Scholar 

  31. Li W, Liang X, Niu H, Tu Z, Feng J, Pan M, Zhang H (2014) Decorating titanate nanotubes with protonated 1,2,4-triazole moieties for anhydrous proton conduction. J Colloid Interface Sci 432:26–30

    Article  Google Scholar 

  32. Shaplov AS, Marcilla R, Mecerreyes D (2015) Recent advances in innovative polymer electrolytes based on poly(ionic liquid)s. Electrochim Acta 175:18–34

    Article  CAS  Google Scholar 

  33. Herz HG, Kreuer KD, Maier J, Scharfenberger G, Schuster MFH, Meyer WH (2003) New fully polymeric proton solvents with high proton mobility. Electrochim Acta 48:2165–2171

    Article  CAS  Google Scholar 

  34. Schuster M, Meyer WH, Wegner G, Herz HG, Ise M, Schuster M, Kreuer KD, Maier J (2001) Proton mobility in oligomer-bound proton solvents: imidazole immobilization via flexible spacers. Solid State Ion 145:85–92

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China [No. 21576216] and the Scientific Research Foundation of Guangxi University [No. XGZ170232].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Li or Pengfei Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, W., Zheng, X. et al. Surface attachment of protonated polyimidazolium monolayer on titanate nanotubes as a novel proton conductor. J Mater Sci 53, 15784–15794 (2018). https://doi.org/10.1007/s10853-018-2739-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2739-9

Keywords

Navigation