Correlation between three-dimensional and cross-sectional characteristics of ideal grain growth: large-scale phase-field simulation study


Grain growth is one of the most fundamental phenomena affecting the microstructure of polycrystalline materials. In experimental studies, three-dimensional (3D) grain growth is usually investigated by examining two-dimensional (2D) cross sections. However, the extent to which the 3D microstructural characteristics can be obtained from cross-sectional observations remains unclear. Additionally, there is some disagreement as to whether a cross-sectional view of 3D grain growth can be fully approximated by 2D growth. In this study, by employing the multi-phase-field method and parallel graphics processing unit computing on a supercomputer, we perform large-scale simulations of 3D and 2D ideal grain growth with approximately three million initial grains. This computational scale supports the detailed comparison of 3D, cross-sectional, and 2D grain structures with good statistical reliability. Our simulations reveal that grain growth behavior in a cross section is very different from those in 3D and fully 2D spaces, in terms of the average and distribution of the grain sizes, as well as the growth kinetics of individual grains. On the other hand, we find that the average grain size in 3D can be estimated as being around 1.2 times that observed in a cross section, which is in good agreement with classical theory in the stereology. Furthermore, based on the Saltykov–Schwartz method, we propose a predictive model that can estimate the 3D grain size distribution from the cross-sectional size distribution.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11


  1. 1

    Humphreys FJ, Hatherly M (2004) Recrystallisation and related annealing phenomena, 2nd edn. Elsevier Ltd., Oxford

    Google Scholar 

  2. 2

    Atkinson HV (1988) Overview no. 65. Theories of normal grain growth in pure single phase systems. Acta Metall 36:469–491

    Article  Google Scholar 

  3. 3

    Thompson CV (2000) Grain growth and evolution of other cellular structures. Solid State Phys 55:269–314

    Article  Google Scholar 

  4. 4

    Russ JC (1986) Practical stereology. Springer, New York

    Google Scholar 

  5. 5

    Rhines FN, Patterson BR (1982) Effect of the degree of prior cold work on the grain volume distribution and the rate of grain growth of recrystallized aluminum. Metall Trans A 13:985–993

    Article  Google Scholar 

  6. 6

    Hull FC (1988) Plane section and spatial characteristics of equiaxed β-brass grains. Mater Sci Technol 4:778–785

    Article  Google Scholar 

  7. 7

    Matsuura K, Itoh Y (1991) Estimation of three-dimensional grain size distribution in polycrystalline material. Mater Trans JIM 32:1042–1047

    Article  Google Scholar 

  8. 8

    Rhines FN, Craig KR, DeHoff RT (1974) Mechanism of steady-state grain growth in aluminum. Metall Trans 5:413–425

    Article  Google Scholar 

  9. 9

    Liu G, Yu H, Qin X (2002) Three-dimensional grain topology-size relationships in a real metallic polycrystal compared with theoretical models. Mater Sci Eng A 326:276–281

    Article  Google Scholar 

  10. 10

    Rowenhorst DJ, Lewis AC, Spanos G (2010) Three-dimensional analysis of grain topology and interface curvature in a β-titanium alloy. Acta Mater 58:5511–5519

    Article  Google Scholar 

  11. 11

    Xue W, Wang H, Liu G, Meng L, Ma G, Feng M (2016) Analysis on topological grain forms via large-scale serial sectioning experiment and Monte Carlo simulation. Mater Lett 174:171–174

    Article  Google Scholar 

  12. 12

    Döbrich KM, Rau C, Krill CE (2004) Quantitative characterization of the three-dimensional microstructure of polycrystalline Al–Sn using X-ray microtomography. Metall Mater Trans A 35:1953–1961

    Article  Google Scholar 

  13. 13

    Bayerlein B, Zaslansky P, Dauphin Y, Rack A, Fratzl P, Zlotnikov I (2014) Self-similar mesostructure evolution of the growing mollusc shell reminiscent of thermodynamically driven grain growth. Nat Mater 13:1102–1107

    Article  Google Scholar 

  14. 14

    Cahn RW (1974) Topology of crystal grains. Nature 250:702–703

    Article  Google Scholar 

  15. 15

    Doherty RD (1984) Stability of the grain structure in metals. J Mater Educ 6:845–883

    Google Scholar 

  16. 16

    Takayama Y, Tozawa T, Kato H, Furushiro N, Hori S (1992) Change in grain size distribution during grain growth. Mater Sci Forum 94–96:325–330

    Article  Google Scholar 

  17. 17

    Rowenhorst DJ, Voorhees PW (2012) Measurement of interfacial evolution in three dimensions. Annu Rev Mater Res 42:105–124

    Article  Google Scholar 

  18. 18

    Anderson MP, Grest GS, Srolovitz DJ (1989) Computer simulation of normal grain growth in three dimensions. Philos Mag B 59:293–329

    Article  Google Scholar 

  19. 19

    Song X, Liu G, Gu N (2000) Re-analysis on grain size distribution during normal grain growth based on Monte Carlo simulation. Scr Mater 43:355–359

    Article  Google Scholar 

  20. 20

    Yu Q, Wu Y, Esche SK (2005) Modeling of grain growth characteristics in three-dimensional domains and two-dimensional cross sections. Metall Mater Trans A 36:1661–1666

    Article  Google Scholar 

  21. 21

    Kawasaki K, Okuzono T (1990) Computer simulation of cellular pattern growth in two and three dimensions. Phase Transit 28:177–211

    Article  Google Scholar 

  22. 22

    Fuchizaki K, Kusaba T, Kawasaki K (1995) Computer modelling of three-dimensional cellular pattern growth. Philos Mag B 71:333–357

    Article  Google Scholar 

  23. 23

    Weygand D, Bréchet Y, Lépinoux J, Gust W (1999) Three-dimensional grain growth: a vertex dynamics simulation. Philos Mag B 79:703–716

    Article  Google Scholar 

  24. 24

    Mason JK, Lazar EA, MacPherson RD, Srolovitz DJ (2015) Geometric and topological properties of the canonical grain growth microstructure. Phys Rev E 92:063308

    Article  Google Scholar 

  25. 25

    Wakai F, Enomoto N, Ogawa H (2000) Three-dimensional microstructural evolution in ideal grain growth—general statistics. Acta Mater 48:1297–1311

    Article  Google Scholar 

  26. 26

    Suwa Y (2013) Phase-field simulation of grain growth. Nippon Steel Tech Rep 102:19–24

    Google Scholar 

  27. 27

    Kim SG, Kim DI, Kim WT, Park YB (2006) Computer simulations of two-dimensional and three-dimensional ideal grain growth. Phys Rev E 74:061605

    Article  Google Scholar 

  28. 28

    Steinbach I, Pezzolla F, Nestler B, Seeßelberg M, Prieler R, Schmitz GJ, Rezende JLL (1996) A phase field concept for multiphase systems. Physica D 94:135–147

    Article  Google Scholar 

  29. 29

    Fan D, Chen L-Q (1997) Computer simulation of grain growth using a continuum field model. Acta Mater 45:611–622

    Article  Google Scholar 

  30. 30

    Garcke H, Nestler B, Stoth B (1999) A multiphase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J Appl Math 60:295–315

    Article  Google Scholar 

  31. 31

    Steinbach I, Pezzolla F (1999) A generalized field method for multiphase transformations using interface fields. Physica D 134:385–393

    Article  Google Scholar 

  32. 32

    Kazaryan A, Wang Y, Dregia SA, Patton BR (2001) Grain growth in systems with anisotropic boundary mobility: analytical model and computer simulation. Phys Rev B 63:184102

    Article  Google Scholar 

  33. 33

    Moelans N, Blanpain B, Wollants P (2005) A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles. Acta Mater 53:1771–1781

    Article  Google Scholar 

  34. 34

    Gruber J, Ma N, Wang Y, Rollett AD, Rohrer GS (2006) Sparse data structure and algorithm for the phase field method. Model Simul Mater Sci Eng 14:1189–1195

    Article  Google Scholar 

  35. 35

    Vedantam S, Patnaik BSV (2006) Efficient numerical algorithm for multiphase field simulations. Phys Rev E 73:016703

    Article  Google Scholar 

  36. 36

    Suwa Y, Saito Y, Onodera H (2008) Parallel computer simulation of three-dimensional grain growth using the multi-phase-field model. Mater Trans 49:704–709

    Article  Google Scholar 

  37. 37

    Darvishi Kamachali R, Steinbach I (2012) 3-D phase-field simulation of grain growth: topological analysis versus mean-field approximations. Acta Mater 60:2719–2728

    Article  Google Scholar 

  38. 38

    Vondrous A, Selzer M, Hötzer J, Nestler B (2013) Parallel computing for phase-field models. Int J High Perform Comput Appl 28:61–72

    Article  Google Scholar 

  39. 39

    Tegeler M, Shchyglo O, Darvishi Kamachali R, Monas A, Steinbach I, Sutmann G (2017) Parallel multiphase field simulations with OpenPhase. Comput Phys Commun 215:173–187

    Article  Google Scholar 

  40. 40

    Yin J, Landau DP (2009) Phase diagram and critical behavior of the square-lattice Ising model with competing nearest-neighbor and next-nearest-neighbor interactions. Phys Rev E 80:051117

    Article  Google Scholar 

  41. 41

    Ohno M (2012) Quantitative phase-field modeling of nonisothermal solidification in dilute multicomponent alloys with arbitrary diffusivities. Phys Rev E 86:051603

    Article  Google Scholar 

  42. 42

    Maia JDC, Urquiza Carvalho GA, Mangueira CP, Santana SR, Cabral LAF, Rocha GB (2012) GPU linear algebra libraries and GPGPU programming for accelerating MOPAC semiempirical quantum chemistry calculations. J Chem Theory Comput 8:3072–3081

    Article  Google Scholar 

  43. 43

    Knezevic M, Savage DJ (2014) A high-performance computational framework for fast crystal plasticity simulations. Comput Mater Sci 83:101–106

    Article  Google Scholar 

  44. 44

    Shibuta Y, Sakane S, Takaki T, Ohno M (2016) Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: linkage between empirical interpretation and atomistic nature. Acta Mater 105:328–337

    Article  Google Scholar 

  45. 45

    Shibuta Y, Sakane S, Miyoshi E, Okita S, Takaki T, Ohno M (2017) Heterogeneity in homogeneous nucleation from billion-atom molecular dynamics simulation of solidification of pure metal. Nat Commun 8:10

    Article  Google Scholar 

  46. 46

    Shimokawabe T, Takaki T, Endo T, Yamanaka A, Maruyama N, Aoki T, Nukada A, Matsuoka S (2011) Peta-scale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer. In: Proceedings of 2011 international conference for high performance computing, networking, storage and analysis. ACM, Seattle, pp 1–11

  47. 47

    Takaki T, Shimokawabe T, Ohno M, Yamanaka A, Aoki T (2013) Unexpected selection of growing dendrites by very-large-scale phase-field simulation. J Cryst Growth 382:21–25

    Article  Google Scholar 

  48. 48

    Shibuta Y, Ohno M, Takaki T (2015) Solidification in a supercomputer: from crystal nuclei to dendrite assemblages. JOM 67:1793–1804

    Article  Google Scholar 

  49. 49

    Takaki T, Sakane S, Ohno M, Shibuta Y, Shimokawabe T, Aoki T (2016) Primary arm array during directional solidification of a single-crystal binary alloy: large-scale phase-field study. Acta Mater 118:230–243

    Article  Google Scholar 

  50. 50

    Takaki T, Sakane S, Ohno M, Shibuta Y, Shimokawabe T, Aoki T (2016) Large-scale phase-field studies of three-dimensional dendrite competitive growth at the converging grain boundary during directional solidification of a bicrystal binary alloy. ISIJ Int 56:1427–1435

    Article  Google Scholar 

  51. 51

    Sakane S, Takaki T, Ohno M, Shibuta Y, Shimokawabe T, Aoki T (2018) Three-dimensional morphologies of inclined equiaxed dendrites growing under forced convection by phase-field-lattice Boltzmann method. J Cryst Growth 483:147–155

    Article  Google Scholar 

  52. 52

    Miyoshi E, Takaki T, Ohno M, Shibuta Y, Sakane S, Shimokawabe T, Aoki T (2017) Ultra-large-scale phase-field simulation study of ideal grain growth. npj Comput Mater 3:25

    Article  Google Scholar 

  53. 53

    Chockalingam K, Kouznetsova VG, van der Sluis O, Geers MGD (2016) 2D Phase field modeling of sintering of silver nanoparticles. Comput Methods Appl Mech Eng 312:492–508

    Article  Google Scholar 

  54. 54

    Suwa Y, Saito Y, Onodera H (2007) Three-dimensional phase field simulation of the effect of anisotropy in grain-boundary mobility on growth kinetics and morphology of grain structure. Comput Mater Sci 40:40–50

    Article  Google Scholar 

  55. 55

    Miyoshi E, Takaki T (2017) Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth. J Cryst Growth 474:160–165

    Article  Google Scholar 

  56. 56

    Backofen R, Barmak K, Elder KE, Voigt A (2014) Capturing the complex physics behind universal grain size distributions in thin metallic films. Acta Mater 64:72–77

    Article  Google Scholar 

  57. 57

    Barmak K, Eggeling E, Kinderlehrer D, Sharp R, Ta’Asan S, Rollett AD, Coffey KR (2013) Grain growth and the puzzle of its stagnation in thin films: the curious tale of a tail and an ear. Prog Mater Sci 58:987–1055

    Article  Google Scholar 

  58. 58

    Korbuly B, Pusztai T, Henry H, Plapp M, Apel M, Gránásy L (2017) Grain coarsening in two-dimensional phase-field models with an orientation field. Phys Rev E 95:053303

    Article  Google Scholar 

  59. 59

    Okita S, Miyoshi E, Sakane S, Takaki T, Ohno M (2018) Grain growth kinetics in submicrometer-scale molecular dynamics simulation. Acta Mater 153:108–116

    Article  Google Scholar 

  60. 60

    Miyoshi E, Takaki T, Shibuta Y, Ohno M (2018) Bridging molecular dynamics and phase-field methods for grain growth prediction. Comput Mater Sci 152:118–124

    Article  Google Scholar 

  61. 61

    Moldovan D, Wolf D, Phillpot SR, Haslam AJ (2002) Role of grain rotation during grain growth in a columnar microstructure by mesoscale simulation. Acta Mater 50:3397–3414

    Article  Google Scholar 

  62. 62

    Vuppuluri A (2018) Theory and simulation of microstructure evolution due to simultaneous grain boundary migration and grain rotation with misorientation dependent energy and mobility. Mater Sci Eng A 713:118–124

    Article  Google Scholar 

  63. 63

    Johnson AE, Voorhees PW (2014) A phase-field model for grain growth with trijunction drag. Acta Mater 67:134–144

    Article  Google Scholar 

  64. 64

    Moelans N, Wendler F, Nestler B (2009) Comparative study of two phase-field models for grain growth. Comput Mater Sci 46:479–490

    Article  Google Scholar 

  65. 65

    Tóth GI, Pusztai T, Gránásy L (2015) Consistent multiphase-field theory for interface driven multidomain dynamics. Phys Rev B 92:184105

    Article  Google Scholar 

  66. 66

    Feltham P (1957) Grain growth in metals. Acta Metall 5:97–105

    Article  Google Scholar 

  67. 67

    Hillert M (1965) On the theory of normal and abnormal grain growth. Acta Metall 13:227–238

    Article  Google Scholar 

  68. 68

    von Neumann J (1952) Discussion—shape of metal grains. In: Herring C (ed) Metal Interfaces. American Society for Metals, Cleveland, pp 108–110

    Google Scholar 

  69. 69

    Mullins WW (1956) Two-dimensional motion of idealized grain boundaries. J Appl Phys 27:900–904

    Article  Google Scholar 

  70. 70

    Fullman RL (1953) Measurement of particle sizes in opaque bodies. Trans AIME 197:447–452

    Google Scholar 

  71. 71

    Saltykov SA (1967) The determination of the size distribution of particles in an opaque material from a measurement of the size distribution of their sections. In: Elias H (ed) Stereology. Springer, New York, pp 163–173

    Google Scholar 

  72. 72

    Schwartz HA (1934) The metallographic determination of the size distribution of temper carbon nodules. Met Alloy 5:139–140

    Google Scholar 

  73. 73

    Galinari CM, Lameiras FS (1998) Steady-state grain growth in UO2. Scr Mater 39:125–129

    Article  Google Scholar 

  74. 74

    Umezaki A, Enomoto M (2000) Estimation of number of precipitate particles per unit volume from measurements on polished specimen surfaces—computer simulation. ISIJ Int 40:1142–1148

    Article  Google Scholar 

  75. 75

    Jeppsson J, Mannesson K, Borgenstam A, Ågren J (2011) Inverse Saltykov analysis for particle-size distributions and their time evolution. Acta Mater 59:874–882

    Article  Google Scholar 

  76. 76

    Cappia F, Pizzocri D, Schubert A, Van Uffelen P, Paperini G, Pellottiero D, Macián-Juan R, Rondinella VV (2016) Critical assessment of the pore size distribution in the rim region of high burnup UO2 fuels. J Nucl Mater 480:138–149

    Article  Google Scholar 

  77. 77

    Mehnert J, Ohser J, Klimanek P (1998) Testing stereological methods for the estimation of spatial size distributions by means of computer-simulated grain structures. Mater Sci Eng A 246:207–212

    Article  Google Scholar 

  78. 78

    Hull FC, Houk WJ (1953) Statistical grain structure studies: plane distribution curves of regular polyhedrons. Trans AIME 197:565–572

    Google Scholar 

  79. 79

    Cahn JW (1956) The kinetics of grain boundary nucleated reactions. Acta Metall 4:449–459

    Article  Google Scholar 

  80. 80

    Umemoto M, Ohtsuka H, Tamura I (1986) Grain size estimation from transformation kinetics. Acta Metall 34:1377–1385

    Article  Google Scholar 

  81. 81

    Takayama Y, Furushiro N, Tozawa T, Kato H, Hori S (1991) A significant method for estimation of the grain size of polycrystalline materials. Mater Trans 32:214–221

    Article  Google Scholar 

  82. 82

    Chae J, Qin R, Bhadeshia HKDH (2009) Topology of the deformation of a non-uniform grain structure. ISIJ Int 49:115–118

    Article  Google Scholar 

  83. 83

    Cruz-Orive LM (1976) Particle size-shape distributions: the general spheroid problem—I. Mathematical model. J Microsc 107:235–253

    Article  Google Scholar 

  84. 84

    Cruz-Orive LM (1978) Particle size-shape distributions: the general spheroid problem—II. Stochastic model and practical guide. J Microsc 112:153–167

    Article  Google Scholar 

  85. 85

    Pabst W, Treza U (2017) A generalized class of transformation matrices for the reconstruction of sphere size distributions from section circle size distributions. Ceram-Silik 61:147–157

    Google Scholar 

Download references


This research was supported by Grant-in-Aid for Scientific Research (B) (No. 16H04490) and for JSPS Fellows (No. 17J06356) from the Japan Society for the Promotion of Science (JSPS), the Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures, and the High Performance Computing Infrastructure in Japan (Project ID: jh170018-NAH), and MEXT as a social and scientific priority issue (Creation of new functional devices and high-performance materials to support next-generation industries) to be tackled using the post-K computer.

Author information



Corresponding author

Correspondence to Tomohiro Takaki.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miyoshi, E., Takaki, T., Ohno, M. et al. Correlation between three-dimensional and cross-sectional characteristics of ideal grain growth: large-scale phase-field simulation study. J Mater Sci 53, 15165–15180 (2018).

Download citation


  • Ideal Grain
  • Schwartz-Saltykov Method
  • Graphics Processing Units (GPUs)
  • Cross-sectional Grain
  • Grain Size Histograms