Journal of Materials Science

, Volume 53, Issue 21, pp 14998–15008 | Cite as

CuAgSe nanocrystals: colloidal synthesis, characterization and their thermoelectric performance

  • Yong Zuo
  • Yu Liu
  • Qiong-Ping He
  • Ji-Ming SongEmail author
  • He-Lin Niu
  • Chang-Jie Mao
Chemical routes to materials


CuAgSe is a promising thermoelectric (TE) material for its superior carrier mobility and ultralow lattice thermal conductivity. Herein, we present a scalable colloidal method to prepare monodisperse CuAgSe nanocrystals with high yield. The collected powder sample was washed by a sulfur-free reagent of NaNH2 to remove the surface organic ligands (CuAgSe-W) and then annealed (CuAgSe-W-A). Both kinds of ligand-free samples were then hot pressed into dense pellets to measure the TE property. The results revealed that the crystal structure of both samples changed from low-temperature β-phase to high-temperature α-phase at around 465 K. Sample CuAgSe-W shows interesting temperature-dependent transition from N-type to P-type, which could be potentially used as thermal control transistor. Sample CuAgSe-W-A does not display this transition state but it exhibits potential for intermediate temperature TE applications with a figure-of-merit zT reaching 0.68 at 566 K.



This work is supported by the National Science Foundation of China (NSFC) (Grants 21641007), and Natural Science Foundation of Anhui Province (Grant no. 1508085MB22), and Major Project of Education Department of Anhui Province (KJ2016SD63). We also thank the Key Laboratory of Environment Friendly Polymer Materials of Anhui Province. YZ and YL thank the China Scholarship Council for scholarship support. The authors thank Prof. Andreu Cabot from Catalonia Energy Research Institute for polishing language.

Supplementary material

10853_2018_2676_MOESM1_ESM.doc (22.2 mb)
Supplementary material 1 (DOC 22704 kb)


  1. 1.
    Grätzel M (2011) Photoelectrochemical cells. Nature 414:338–344CrossRefGoogle Scholar
  2. 2.
    Bell LE (2008) Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321:1457–1461CrossRefGoogle Scholar
  3. 3.
    Tan GJ, Zhao LD, Kanatzidis MG (2016) Rationally designing high-performance bulk thermoelectric materials. Chem Rev 116:12123–12149CrossRefGoogle Scholar
  4. 4.
    Wang H, Hwang J, Snedaker ML, Kim IH, Kang C, Kim J, Stucky GD, Bowers J, Kim W (2015) High thermoelectric performance of a heterogeneous PbTe nanocomposite. Chem Mater 27:944–949CrossRefGoogle Scholar
  5. 5.
    Park K, Hwang HK, Seo JW, Seo WS (2013) Enhanced high-temperature thermoelectric properties of Ce-and Dy-doped ZnO for power generation. Energy 54:139–145CrossRefGoogle Scholar
  6. 6.
    Forster JD, Lynch JJ, Urban JJ (2017) Solution-processed Cu2Se nanocrystal films with bulk-like thermoelectric performance. Scientific Rep 7:2765CrossRefGoogle Scholar
  7. 7.
    Slack GA (1995) CRC handbook of thermoelectrics. CRC Press, New York, p 720Google Scholar
  8. 8.
    Liu HL, Shi X, Xu FF, Zhang LL, Zhang WQ, Chen LD, Li Q, Uher C, Day T, Snyder GJ (2012) Copper ion liquid-like thermoelectrics. Nat Mater 11:422–425CrossRefGoogle Scholar
  9. 9.
    Yu JL, Zhao KP, Qiu PF, Shi X, Chen LD (2017) Thermoelectric properties of copper-deficient Cu2−xSe (0.05 ≤ x ≤ 0.25) binary compounds. Ceram Int 43:11142–11148CrossRefGoogle Scholar
  10. 10.
    Wang XB, Qiu PF, Zhang TS, Ren DD, Wu LH, Shi X, Yang JH, Chen LD (2015) Compound defects and thermoelectric properties in ternary CuAgSe-based materials. J Mater Chem A 3:13662–13670CrossRefGoogle Scholar
  11. 11.
    Satya NG, Jaysree P, Arghya B, Dirtha S, Umesh VW, Kanishka B (2014) Temperature dependent reversible p − n−p type conduction switching with colossal change in thermopower of semiconducting AgCuS. J Am Chem Soc 136:12712–12720CrossRefGoogle Scholar
  12. 12.
    Satya NG, Dirtha S, Kanishka B (2016) The effect of order–disorder phase transitions and band gap evolution on the thermoelectric properties of AgCuS nanocrystals. Chem Sci 7:534–543CrossRefGoogle Scholar
  13. 13.
    Subhajit R, Manoj KJ, Jaysree P, Satya NG, Dirtha S, Umesh VW, Kanishka B (2018) Soft phonon modes leading to ultralow thermal conductivity and high thermoelectric performance in AgCuTe. Angew Chem Int Ed 57:4043–4047CrossRefGoogle Scholar
  14. 14.
    Chrissafis K, Vouroutzis N, Paraskevopoulos KM, Frangis N, Manolikas C (2004) Phase transformation in CuAgSe: a DSC and electron diffraction examination. J Alloys Compd 385:169–172CrossRefGoogle Scholar
  15. 15.
    Hong AJ, Li T, Zhu HX, Zhou XH, He QY, Liu WS, Yan ZB, Liu JM, Ren ZF (2014) Anomalous transport and thermoelectric performances of CuAgSe compounds. Solid State Ionics 261:21–25CrossRefGoogle Scholar
  16. 16.
    Han C, Sun Q, Cheng ZX, Wang JL, Li Z, Lu GQ, Dou SX (2014) Ambient scalable synthesis of surfactant-free thermoelectric CuAgSe nanoparticles with reversible metallic-np conductivity transition. J Am Chem Soc 136:17626–17633CrossRefGoogle Scholar
  17. 17.
    Moroz NA, Olvera A, Willis GM, Poudeu PFP (2015) Rapid direct conversion of Cu2−xSe to CuAgSe nanoplatelets via ion exchange reactions at room temperature. Nanoscale 7:9452–9456CrossRefGoogle Scholar
  18. 18.
    Mahler B, Hoepfner V, Liao K, Ozin GA (2014) Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J Am Chem Soc 136:14121–14127CrossRefGoogle Scholar
  19. 19.
    Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980CrossRefGoogle Scholar
  20. 20.
    Zhao LD, Tan GJ, Hao SQ, He JQ, Pei YL, Chi H, Wang H, Gong SK, Xu HB, Dravid VP, Uher C, Snyder GJ, Wolverton C, Kanatzidis MG (2016) Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science 351:141–144CrossRefGoogle Scholar
  21. 21.
    Li F, Zheng ZH, Li YW, Wang WT, Li JF, Li B, Zhong AH, Luo JT, Fan P (2017) Ag-doped SnSe2 as a promising mid-temperature thermoelectric material. J Mater Sci 52:10506–10516. CrossRefGoogle Scholar
  22. 22.
    Song JM, Liu Y, Niu HL, Mao CJ, Cheng LJ, Zhang SY, Shen YH (2013) Hot-injection synthesis and characterization of monodispersed ternary Cu2SnSe3 nanocrystals for thermoelectric applications. J Alloys Compd 581:646–652CrossRefGoogle Scholar
  23. 23.
    Dirmyer MR, Martin J, Nolas GS, Sen A, Badding JV (2009) Thermal and electrical conductivity of size-tuned bismuth telluride nanoparticles. Small 5:933–937CrossRefGoogle Scholar
  24. 24.
    Mehta RJ, Zhang YL, Karthik C, Singh B, Siegel RW, Borca-Tasciuc T, Ramanath G (2012) A new class of doped nanobulk high-figure-of-merit thermoelectrics by scalable bottom-up assembly. Nat Mater 11:233–240CrossRefGoogle Scholar
  25. 25.
    Ibáñez M, Luo ZS, Genc A, Piveteau L, Ortega S, Cadavid D, Dobrozhan O, Liu Y, Nachtegaal M, Zebarjadi M, Arbiol J, Kovalenko MV, Cabot A (2016) High-performance thermoelectric nanocomposites from nanocrystal building blocks. Nat Commun 7:10766CrossRefGoogle Scholar
  26. 26.
    Ibáñez M, Korkosz RJ, Luo ZS, Riba P, Cadavid D, Ortega S, Cabot A, Kanatzidis MG (2015) Electron doping in bottom-up engineered thermoelectric nanomaterials through HCl-mediated ligand displacement. J Am Chem Soc 137:4046–4049CrossRefGoogle Scholar
  27. 27.
    Liu Y, Cadavid D, Ibáñez M, De Roo J, Ortega S, Dobrozhan O, Kovalenko MV, Cabot A (2016) Colloidal AgSbSe2 nanocrystals: surface analysis, electronic doping and processing into thermoelectric nanomaterials. J Mater Chem C 4:4756–4762CrossRefGoogle Scholar
  28. 28.
    Liu Y, García G, Ortega S, Cadavid D, Palacios P, Lu JH, Ibáñez M, Xi LL, De Roo J, López AM, Sánchez SM, Cabezas I, de la Mata M, Luo ZS, Dun CC, Dobrozhan O, Carroll DL, Zhang WQ, Martins J, Kovalenko MV, Arbiol J, Noriega G, Song JM, Wahnón P, Cabot A (2017) Solution-based synthesis and processing of Sn-and Bi-doped Cu3SbSe4 nanocrystals, nanomaterials and ring-shaped thermoelectric generators. J Mater Chem A 5:2592–2602CrossRefGoogle Scholar
  29. 29.
    Ibáñez M, Cadavid D, Anselmi-Tamburini U, Zamani R, Gorsse S, Li WH, Lopez AM, Morante JR, Arbiol J, Cabot A (2013) Colloidal synthesis and thermoelectric properties of Cu2SnSe3 nanocrystals. J Mater Chem A 1:1421–1426CrossRefGoogle Scholar
  30. 30.
    Zhang AJ, Shen XC, Zhang Z, Lu X, Yao W, Dai JY, Xie DD, Guo LJ, Wang GY, Zhou XY (2017) Large-scale colloidal synthesis of Cu5FeS4. J Mater Chem C 5:301–308CrossRefGoogle Scholar
  31. 31.
    Fan FJ, Wang YX, Liu XJ, Wu L, Yu SH (2012) Large-scale colloidal synthesis of non-stoichiometric Cu2ZnSnSe4 nanocrystals for thermoelectric applications. Adv Mater 24:6158–6163CrossRefGoogle Scholar
  32. 32.
    Pan DC, An LJ, Sun ZM, Hou W, Yang Y, Yang ZZ, Lu YF (2008) Synthesis of Cu–In–S ternary nanocrystals with tunable structure and composition. J Am Chem Soc 130:5620–5621CrossRefGoogle Scholar
  33. 33.
    Shi CL, Xi XK, Hou ZP, Liu EK, Wang WH, Jin SF, Wu Y, Wu GH (2016) Atomic-level characterization of dynamics of copper ions in CuAgSe. J Phys Chem C 120:3229–3234CrossRefGoogle Scholar
  34. 34.
    Chen XQ, Li Z, Bai Y, Sun Q, Wang LZ, Dou SX (2015) Room-temperature synthesis of Cu2−xE (E = S, Se) nanotubes with hierarchical architecture as high-performance counter electrodes of quantum-dot-sensitized solar cells. Chem Eur J 21:1055–1063CrossRefGoogle Scholar
  35. 35.
    Zhu CN, Chen G, Tian ZQ, Wang W, Zhong WQ, Li Z, Zhang ZL, Pang DW (2017) Near-infrared fluorescent Ag2Se–cetuximab nanoprobes for targeted imaging and therapy of cancer. Small 13:1602309CrossRefGoogle Scholar
  36. 36.
    Zhang SS, Song JM, Niu HL, Mao CJ, Zhang SY, Shen YH (2014) Facile synthesis of antimony selenide with lamellar nanostructures and their efficient catalysis for the hydrogenation of p-nitrophenol. J Alloys Compd 585:40–47CrossRefGoogle Scholar
  37. 37.
    Roychowdhury S, Shenoy US, Waghmare UV, Biswas K (2015) Tailoring of electronic structure and thermoelectric properties of a topological crystalline insulator by chemical doping. Angew Chem Int Ed 54:15241–15245CrossRefGoogle Scholar
  38. 38.
    Zhao LD, Zhang X, Wu HJ, Tan GJ, Pei YL, Xiao Y, Chang C, Wu D, Chi H, Zheng L, Gong SK, Uher C, He JQ, Kanatzidis MG (2016) Enhanced thermoelectric properties in the counter-doped SnTe system with strained endotaxial SrTe. J Am Chem Soc 138:2366–2373CrossRefGoogle Scholar
  39. 39.
    Fahrnbauer F, Souchay D, Wagner G, Oeckler O (2015) High thermoelectric figure of merit values of germanium antimony tellurides with kinetically stable cobalt germanide precipitates. J Am Chem Soc 137:12633–12638CrossRefGoogle Scholar
  40. 40.
    Mi WL, Qiu PF, Zhang TS, Lv YH, Shi X, Chen LD (2014) Thermoelectric transport of Se-rich Ag2Se in normal phases and phase transitions. Appl Phys Lett 104:133903CrossRefGoogle Scholar
  41. 41.
    Sirusi AA, Ballikaya S, Uher C, Ross JH (2015) Low-temperature structure and dynamics in Cu2Se. J Phys Chem C 119:20293–20298CrossRefGoogle Scholar
  42. 42.
    Yang L, Chen ZG, Han G, Hong M, Zou YC, Zou J (2015) High-performance thermoelectric Cu2Se nanoplates through nanostructure engineering. Nano Energy 16:367–374CrossRefGoogle Scholar
  43. 43.
    Mahan GD (2015) The Seebeck coefficient of superionic conductors. J Appl Phys 117:045101CrossRefGoogle Scholar
  44. 44.
    Brown DR, Day T, Caillat T, Snyder GJ (2013) Chemical stability of (Ag, Cu)2Se: a historical overview. J Electron Mater 42:2014–2019CrossRefGoogle Scholar
  45. 45.
    Xie HB, Liu WF, Li XY, Yan F, Jiang GS, Zhu CF (2013) Preparation of CuInSe2 thin films by selenization of co-sputtered Cu-In precursors using rapid thermal processing. J Mater Sci Mater Electron 24:475–482. CrossRefGoogle Scholar
  46. 46.
    Fang CX, Zhang SY, Zuo PF, Wei W, Jin BK, Wu JY, Tian YP (2009) Nanotube–nanotube transformation synthesis and electrochemistry of crystalline CuAgSe nanotubes. J Cryst Growth 311:2345–2351CrossRefGoogle Scholar
  47. 47.
    Goldsmid HJ (1986) Electronic refrigeration. Pion Limited, London, p 227Google Scholar
  48. 48.
    Qiu PF, Wang XB, Zhang TS, Shi X, Chen LD (2015) Thermoelectric properties of Te-doped ternary CuAgSe compounds. J Mater Chem A 3:22454–22461CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations