Skip to main content
Log in

Construction of layer-by-layer g-C3N4/Ag/Bi2WO6 Z-scheme system with enhanced photocatalytic activity

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A highly active Z-scheme layer-by-layer g-C3N4/Ag/Bi2WO6 system was designed and prepared by a facile in situ growth strategy, which led to superior visible-light photocatalytic efficiency with excellent stability and reusability. The photocatalytic degradation rate of Rhodamine B with CN/Ag/BWO was proved to be 3 times higher than g-C3N4 and 4 times higher than Bi2WO6, further demonstrating the necessity of the layer-by-layer structure and the suitable electron mediator Ag in Z-scheme system. A probable mechanism for the enhanced photocatalytic efficiency of CN/Ag/BWO system was proposed. The results demonstrated that ·O2 or direct h+ was the primary reactive radicals involved, which confirmed that the Z-scheme mechanism of charge carrier transfer conducted the higher photocatalytic activity. This work provided scientific basis for rational construction of Z-scheme photocatalytic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Di J, Xia J, Ge Y et al (2015) Novel visible-light-driven CQDs/Bi2WO6 hybrid materials with enhanced photocatalytic activity toward organic pollutants degradation and mechanism insight. Appl Catal B Environ 168:51

    Article  Google Scholar 

  2. Cao S, Li Y, Zhu B et al (2017) Facet effect of Pd cocatalyst on photocatalytic CO2 reduction over g-C3N4. J Catal 349:208

    Article  CAS  Google Scholar 

  3. Liu J, Liu Y, Liu N et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347:970

    Article  CAS  Google Scholar 

  4. Xu D, Cheng B, Cao S, Yu J (2015) Enhanced photocatalytic activity and stability of Z-scheme Ag2CrO4-GO composite photocatalysts for organic pollutant degradation. Appl Catal B Environ 164:380

    Article  CAS  Google Scholar 

  5. Yang X, Chen Z, Xu J, Tang H, Chen K, Jiang Y (2015) Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Appl Mater Interfaces 7:15285

    Article  CAS  Google Scholar 

  6. Chen S, Qi Y, Hisatomi T et al (2015) Efficient visible-light-driven Z-scheme overall water splitting using a MgTa2O6-xNy/TaON heterostructure photocatalyst for H2 evolution. Angew Chem Int Ed 54:8498

    Article  CAS  Google Scholar 

  7. Chen Z, Wang W, Zhang Z, Fang X (2013) High-efficiency visible-light-driven Ag3PO4/AgI photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic activity. J Phys Chem C 117:19346

    Article  CAS  Google Scholar 

  8. Jin J, Yu J, Guo D, Cui C, Ho W (2015) A hierarchical Z-scheme CdS-WO3 photocatalyst with enhanced CO2 reduction activity. Small 11:5262

    Article  CAS  Google Scholar 

  9. Zhou P, Yu J, Jaroniec M (2014) All-solid-state Z-scheme photocatalytic systems. Adv Mater 26:4920

    Article  CAS  Google Scholar 

  10. Cao X, Zheng B, Shi W et al (2015) Reduced graphene oxide-wrapped MoO3 composites prepared by using metal-organic frameworks as precursor for all-solid-state flexible supercapacitors. Adv Mater 27:4695

    Article  CAS  Google Scholar 

  11. Cao S, Zhou N, Gao F, Chen H, Jiang F (2017) All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl Catal B Environ 218:600

    Article  CAS  Google Scholar 

  12. Jo W-K, Natarajan TS (2015) Influence of TiO2 morphology on the photocatalytic efficiency of direct Z-scheme g-C3N4/TiO2 photocatalysts for isoniazid degradation. Chem Eng J 281:549

    Article  CAS  Google Scholar 

  13. Cao S, Huang Q, Zhu B, Yu J (2017) Trace-level phosphorus and sodium co-doping of g-C3N4 for enhanced photocatalytic H2 production. J Power Sources 351:151

    Article  CAS  Google Scholar 

  14. Lakhi KS, Park DH, Al-Bahily K et al (2017) Mesoporous carbon nitrides: synthesis, functionalization, and applications. Chem Soc Rev 46(1):72

    Article  CAS  Google Scholar 

  15. Xu H, Wu Z, Wang Y, Lin C (2017) Enhanced visible-light photocatalytic activity from graphene-like boron nitride anchored on graphitic carbon nitride sheets. J Mater Sci 52:9477. https://doi.org/10.1007/s10853-017-1167-6

    Article  CAS  Google Scholar 

  16. Tian J, Sang Y, Yu G, Jiang H, Mu X, Liu H (2013) A Bi2WO6-based hybrid photocatalyst with broad spectrum photocatalytic properties under UV, visible, and near-infrared irradiation. Adv Mater 25:5075

    Article  CAS  Google Scholar 

  17. Saison T, Gras P, Chemin N et al (2013) New insights into Bi2WO6 properties as a visible-light photocatalyst. J Phys Chem C 117:22656

    Article  CAS  Google Scholar 

  18. Zhou Y, Zhang Y, Lin M et al (2015) Monolayered Bi2WO6 nanosheets mimicking heterojunction interface with open surfaces for photocatalysis. Nat Commun 6:8340

    Article  Google Scholar 

  19. Huang J, Tan G, Ren H et al (2014) Photoelectric activity of a Bi2O3/Bi2WO6−xF2x heterojunction prepared by a simple one-step microwave hydrothermal method. ACS Appl Mater Interfaces 6:21041

    Article  CAS  Google Scholar 

  20. Tian Y, Chang B, Lu J, Fu J, Xi F, Dong X (2013) Hydrothermal synthesis of graphitic carbon nitride-Bi2WO6 heterojunctions with enhanced visible light photocatalytic activities. ACS Appl Mater Interfaces 5:7079

    Article  CAS  Google Scholar 

  21. Wang Y, Bai X, Pan C, He J, Zhu Y (2012) Enhancement of photocatalytic activity of Bi2WO6 hybridized with graphite-like C3N4. J Mater Chem 22:11568

    Article  CAS  Google Scholar 

  22. Li Ft, Liu Sj, Xue Yb et al (2015) Structure modification function of g-C3N4 for Al2O3 in the In situ hydrothermal process for enhanced photocatalytic activity. Chem A Eur J 21:10149

    Article  CAS  Google Scholar 

  23. Wang Y, Wang Z, Muhammad S, He J (2012) Graphite-like C3N4 hybridized ZnWO4 nanorods: synthesis and its enhanced photocatalysis in visible light. Cryst Eng Comm 14:5065

    Article  CAS  Google Scholar 

  24. Zhou W, Yin Z, Du Y et al (2013) Synthesis of few-layer MoS2 nanosheet-coated TiO2 nanobelt heterostructures for enhanced photocatalytic activities. Small 9:140

    Article  CAS  Google Scholar 

  25. Su F, Mathew SC, Lipner G et al (2010) mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J Am Chem Soc 132:16299

    Article  CAS  Google Scholar 

  26. Li X-H, Wang X, Antonietti M (2012) Mesoporous g-C3N4 nanorods as multifunctional supports of ultrafine metal nanoparticles: hydrogen generation from water and reduction of nitrophenol with tandem catalysis in one step. Chem Sci 3:2170

    Article  CAS  Google Scholar 

  27. Kaur A, Kansal SK (2016) Bi2WO6 nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem Eng J 302:194

    Article  CAS  Google Scholar 

  28. Niu P, Zhang L, Liu G, Cheng HM (2012) Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv Funct Mater 22:4763

    Article  CAS  Google Scholar 

  29. Yan S, Li Z, Zou Z (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25:10397

    Article  CAS  Google Scholar 

  30. Algara-Siller G, Severin N, Chong SY et al (2014) Triazine-based graphitic carbon nitride: a two-dimensional semiconductor. Angew Chem Int Edit 126:7580

    Article  Google Scholar 

  31. Mączka M, Ptak M, Kępiński L, Tomaszewski P, Hanuza J (2010) X-ray, SEM, Raman and IR studies of Bi2W2O9 prepared by Pechini method. Vib Spectrosc 53:199

    Article  Google Scholar 

  32. Zhou Y, Antonova E, Lin Y, Grunwaldt JD, Bensch W, Patzke GR (2012) In situ X-ray absorption spectroscopy/energy-dispersive X-ray diffraction studies on the hydrothermal formation of Bi2W1−xMoxO6 nanomaterials. Eur J Inorg Chem 2012:783

    Article  CAS  Google Scholar 

  33. Zhu Y, Wang Y, Ling Q, Zhu Y (2017) Enhancement of full-spectrum photocatalytic activity over BiPO4/Bi2WO6 composites. Appl Catal B Environ 200:222

    Article  CAS  Google Scholar 

  34. Ma D, Wu J, Gao M, Xin Y, Sun Y, Ma T (2017) Hydrothermal synthesis of an artificial Z-scheme visible light photocatalytic system using reduced graphene oxide as the electron mediator. Chem Eng J 313:1567

    Article  CAS  Google Scholar 

  35. Bao N, Hu X, Zhang Q (2017) Synthesis of porous carbon-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Appl Surf Sci 403:682–690

    Article  CAS  Google Scholar 

  36. Zhang X, Wang LW, Wang CY et al (2015) Synthesis of BiOClxBr1−x nanoplate solid solutions as a robust photocatalyst with tunable band structure. Chem A Eur J 21:11872

    Article  CAS  Google Scholar 

  37. Deki S, Béléké AB, Kotani Y, Mizuhata M (2010) Synthesis of tungsten oxide thin film by liquid phase deposition. Mater Chem Phys 123:614

    Article  CAS  Google Scholar 

  38. Xu J, Harmer J, Li G et al (2010) Size dependent oxygen buffering capacity of ceria nanocrystals. Chem Commun 46:1887

    Article  CAS  Google Scholar 

  39. Wang S, Li D, Sun C, Yang S, Guan Y, He H (2014) Synthesis and characterization of g-C3N4/Ag3VO4 composites with significantly enhanced visible-light photocatalytic activity for triphenylmethane dye degradation. Appl Catal B Environ 144:885

    Article  CAS  Google Scholar 

  40. Martha S, Nashim A, Parida K (2013) Facile synthesis of highly active g-C3N4 for efficient hydrogen production under visible light. J Mater Chem A 1:7816

    Article  CAS  Google Scholar 

  41. Wang J, Zhang W-D (2012) Modification of TiO2 nanorod arrays by graphite-like C3N4 with high visible light photoelectrochemical activity. Electrochim Acta 71:10

    Article  CAS  Google Scholar 

  42. Li J, Shen B, Hong Z, Lin B, Gao B, Chen Y (2012) A facile approach to synthesize novel oxygen-doped g-C3N4 with superior visible-light photoreactivity. Chem Commun 48:12017

    Article  CAS  Google Scholar 

  43. Wang X, Fan H, Ren P, Yu H, Li J (2012) A simple route to disperse silver nanoparticles on the surfaces of silica nanofibers with excellent photocatalytic properties. Mater Res Bull 47:1734

    Article  CAS  Google Scholar 

  44. Xu T, Zhang L, Cheng H, Zhu Y (2011) Significantly enhanced photocatalytic performance of ZnO via graphene hybridization and the mechanism study. Appl Catal B Environ 101:382

    Article  CAS  Google Scholar 

  45. Kundu S, Sadhu S, Bera R, Paramanik B, Patra A (2017) Fluorescence dynamics and stochastic model for electronic interaction of graphene oxide with CdTe QD in graphene oxide-CdTe QD composite. J Phys Chem C 117:23987

    Article  Google Scholar 

  46. Wang W, Zhang L, An T, Li G, Yip HY, Wong PK (2011) Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B-Ni-codoped TiO2 microspheres: the role of different reactive species. Appl Catal B Environ 108–109:108

    Article  Google Scholar 

  47. Jo WK, Sivakumar NT (2015) Facile synthesis of novel redox-mediator-free direct Z-scheme CaIn2S4 marigold-flower-like/TiO2 photocatalysts with superior photocatalytic efficiency. ACS Appl Mater Interfaces 7:17138

    Article  CAS  Google Scholar 

  48. Wei Z, Benlin D, Fengxia Z et al (2018) A novel 3D plasmonic pn heterojunction photocatalyst: Ag nanoparticles on flower-like p-Ag2S/n-BiVO4 and its excellent photocatalytic reduction and oxidation activities. Appl Catal B Environ 229:171

    Article  CAS  Google Scholar 

  49. Xiao X, Wei J, Yang Y, Xiong R, Pan C, Shi J (2016) Photoreactivity and mechanism of g-C3N4 and Ag Co-modified Bi2WO6 microsphere under visible light irradiation. ACS Sustain Chem Eng 4(6):3017–3023

    Article  CAS  Google Scholar 

  50. Liu L, Qi Y, Lu J et al (2015) Dramatic activity of a BiWO@g-CN photocatalyst with a core@shell structure. RSC Adv 5:99339

    Article  CAS  Google Scholar 

  51. Shifu C, Lei J, Wenming T, Xianliang F (2013) Fabrication, characterization and mechanism of a novel Z-scheme photocatalyst NaNbO3/WO3 with enhanced photocatalytic activity. Dalton Trans 42:10759

    Article  Google Scholar 

  52. She X, Wu J, Xu H et al (2017) High efficiency photocatalytic water splitting using 2D α‐Fe2O3/g‐C3N4 Z‐scheme catalysts. Adv Energy Mater 7:1700025

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (51372234, 51172218 and 21301187), Fundamental Research Funds for the Central Universities (Grant 201564001), the project funding by China Postdoctoral Science Foundation (Grant 2015M582132 and 2016T90652), and the Qingdao Science and Technology Plan (Grant 15-9-1-60-jch).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bohua Dong or Lixin Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2731 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Li, X., Su, G. et al. Construction of layer-by-layer g-C3N4/Ag/Bi2WO6 Z-scheme system with enhanced photocatalytic activity. J Mater Sci 53, 16010–16021 (2018). https://doi.org/10.1007/s10853-018-2672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2672-y

Keywords

Navigation