Skip to main content
Log in

Soft template synthesis of acetylene black/manganese dioxide nanosheets composites as efficient sulfur hosts for lithium–sulfur batteries

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Manganese dioxide (MnO2)-based nanomaterials can be used as sulfur host, improving the cycle stability by inhibiting the shuttle effects of polysulfide through chemisorption with the polar host. In this work, we design a novel soft template synthesis of acetylene black and MnO2 nanosheets (AB/MnO2) composites by simple and cost-effective methodology. The AB/MnO2 was used as a highly efficient sulfur host for advanced lithium–sulfur batteries. The cheap and highly conductive AB facilitates fast electron transport. The polar host, MnO2 nanosheets, provides chemical interactions and efficiently impedes the dissolution of polysulfide. Accordingly, the cathodes AB/MnO2–S (4:1) and AB/MnO2–S (1:1) with 67 and 70 wt% sulfur content deliver the initial discharge specific capacity of 1326 and 1113 mA h g−1 at the current density of 837.5 mA g−1 (0.5 C), respectively. Particularly, the AB/MnO2–S (1:1) cathode shows the most stable coulombic efficiency and cyclability compared with AB/S cathode after 200 cycles. In addition, the AB/MnO2–S (4:1) cathode exhibits a capacity of 1071 mA h g−1 at the current density of 1675 mA g–1 (1 C). Along with this green and cost-effective protocol of synthesis, we expect that the AB/MnO2 composites have potential application in advanced Li–S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Rehman S, Khan K, Zhao Y, Hou Y (2017) Nanostructured cathode materials for lithium–sulfur batteries: progress, challenges and perspectives. J Mater Chem A 5:3014–3038

    Article  Google Scholar 

  2. Zhang YZ, Cheng T, Wang Y, Lai WY, Pang H, Huang W (2016) A simple approach to boost capacitance: flexible supercapacitors based on manganese oxides@MOFs via chemically induced in situ self-transformation. Adv Mater 28:5242–5248

    Article  Google Scholar 

  3. Pang Q, Liang X, Kwok CY, Kulisch J, Nazar LF (2017) A comprehensive approach toward stable lithium–sulfur batteries with high volumetric energy density. Adv Energy Mater 7:1601630

    Article  Google Scholar 

  4. Rehman S, Tang T, Ali Z, Huang X, Hou Y (2017) Integrated design of MnO2@carbon hollow nanoboxes to synergistically encapsulate polysulfides for empowering lithium sulfur batteries. Small 13:1700087

    Article  Google Scholar 

  5. Chen M, Wang X, Cai S, Ma Z, Song P, Fisher AC (2016) Enhancing the performance of lithium–sulfur batteries by anchoring polar polymers on the surface of sulfur host materials. J Mater Chem A 4:16148–16156

    Article  Google Scholar 

  6. Zhang G, Zhang Z-W, Peng H-J, Huang J-Q, Zhang Q (2017) Lithium–sulfur batteries: a toolbox for lithium–sulfur battery research: methods and protocols. Small Methods 1:1770071

    Google Scholar 

  7. Manthiram A, Chung SH, Zu C (2015) Lithium–sulfur batteries: progress and prospects. Adv Mater 27:1980–2006

    Article  Google Scholar 

  8. Zhang Z, Li Q, Zhang K, Lai Y, Li J (2015) Micro-nano structure composite cathode material with high sulfur loading for advanced lithium–sulfur batteries. Electrochim Acta 152:53–60

    Article  Google Scholar 

  9. Suo L, Hu YS, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4:1481

    Article  Google Scholar 

  10. Chen M, Jiang S, Huang C, Wang X, Cai S, Xiang K, Zhang Y, Xue J (2017) Honeycomb-like nitrogen and sulfur dual-doped hierarchical porous biomass-derived carbon for lithium–sulfur batteries. ChemSusChem 10:1803–1812

    Article  Google Scholar 

  11. Liu M, Liu Y, Yan Y, Wang F, Liu J, Liu T (2017) A highly conductive carbon-sulfur film with interconnected mesopores as an advanced cathode for lithium–sulfur batteries. Chem Commun 53:9097–9100

    Article  Google Scholar 

  12. Liu M, Li Q, Qin X, Liang G, Han W, Zhou D, He YB, Li B, Kang F (2017) Suppressing self-discharge and shuttle effect of lithium–sulfur batteries with V2O5-decorated carbon nanofiber interlayer. Small 13:1602539

    Article  Google Scholar 

  13. Yang W, Yang W, Song A, Gao L, Sun G, Shao G (2017) Pyrrole as a promising electrolyte additive to trap polysulfides for lithium–sulfur batteries. J Power Sources 348:175–182

    Article  Google Scholar 

  14. Zheng M, Hu Q, Zhang S, Tang H, Li L, Pang H (2017) Macroporous activated carbon derived from rapeseed shell for lithium–sulfur batteries. Appl Sci 7:1036

    Article  Google Scholar 

  15. Wang D-H, Xie D, Xia X-H, Zhang X-Q, Tang W-J, Zhong Y, Wu J-B, Wang X-L, Tu J-P (2017) A 3D conductive network with high loading Li2S@C for high performance lithium–sulfur batteries. J Mater Chem A 5:19358–19363

    Article  Google Scholar 

  16. Zhang Y-Z, Zhang Z, Liu S, Li G-R, Gao X-P (2018) Free-standing porous carbon nanofiber/carbon nanotube film as sulfur immobilizer with high areal capacity for lithium–sulfur battery. ACS Appl Mater Interfaces 10:8749–8757

    Article  Google Scholar 

  17. Kang W, Fan L, Deng N, Zhao H, Li Q, Naebe M, Yan J, Cheng B (2018) Sulfur-embedded porous carbon nanofiber composites for high stability lithium–sulfur batteries. Chem Eng J 333:185–190

    Article  Google Scholar 

  18. Ren W, Ma W, Zhang S, Tang B (2018) Nitrogen-doped carbon fiber foam enabled sulfur vapor deposited cathode for high performance lithium sulfur batteries. Chem Eng J 341:441–449

    Article  Google Scholar 

  19. Chen M, Jiang S, Cai S, Wang X, Xiang K, Ma Z, Song P, Fisher AC (2017) Hierarchical porous carbon modified with ionic surfactants as efficient sulfur hosts for the high-performance lithium–sulfur batteries. Chem Eng J 313:404–414

    Article  Google Scholar 

  20. Walle MD, Zhang Z, You X, Zhang M, Chabu JM, Li Y, Liu Y-N (2016) Soft approach hydrothermal synthesis of a 3D sulfur/graphene/multiwalled carbon nanotube cathode for lithium–sulfur batteries. RSC Adv 6:78994–78998

    Article  Google Scholar 

  21. Hwang TH, Jung DS, Kim JS, Kim BG, Choi JW (2013) One-dimensional carbon–sulfur composite fibers for Na–S rechargeable batteries operating at room temperature. Nano Lett 13:4532–4538

    Article  Google Scholar 

  22. Chabu JM, Zeng K, Walle MD, You X, Zhang M, Li Y, Liu Y-N (2017) Facile fabrication of sulfur/graphene composite for high-rate lithium–sulfur batteries. ChemistrySelect 2:11035–11039

    Article  Google Scholar 

  23. Zheng M, Zhang S, Chen S, Lin Z, Pang H, Yu Y (2017) Activated graphene with tailored pore structure parameters for long cycle-life lithium–sulfur batteries. Nano Res 10:4305–4317

    Article  Google Scholar 

  24. Rong J, Ge M, Fang X, Zhou C (2014) Solution ionic strength engineering as a generic strategy to coat graphene oxide (GO) on various functional particles and its application in high-performance lithium–sulfur (Li–S) batteries. Nano Lett 14:473–479

    Article  Google Scholar 

  25. Yan M, Zhang Y, Li Y, Huo Y, Yu Y, Wang C, Jin J, Chen L, Hasan T, Wang B, Su B-L (2016) Manganese dioxide nanosheet functionalized sulfur@PEDOT core-shell nanospheres for advanced lithium–sulfur batteries. J Mater Chem A 4:9321–9702

    Article  Google Scholar 

  26. Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z, Ma X, Gupta T, Singh CV, Ren W, Cheng H-M, Koratkar N (2017) Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium–sulfur batteries. Adv Mater 29:1602734

    Article  Google Scholar 

  27. Wei SZ, Li W, Cha JJ, Zheng G, Yang Y, Mcdowell MT, Hsu PC, Cui Y (2013) Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulphur batteries. Nat Commun 4:1331

    Article  Google Scholar 

  28. Mei S, Jafta CJ, Lauermann I, Ran Q, Kärgell M, Ballauff M, Lu Y (2017) Porous Ti4O7 particles with interconnected-pore structure as a high-efficiency polysulfide mediator for lithium–sulfur batteries. Adv Energy Mater 27:1701176

    Google Scholar 

  29. Chen M, Lu Q, Jiang S, Huang C, Wang X, Wu B, Xiang K, Wu Y (2018) MnO2 nanosheets grown on the internal/external surface of N-doped hollow porous carbon nanospheres as the sulfur host of advanced lithium–sulfur batteries. Chem Eng J 335:831–842

    Article  Google Scholar 

  30. Tang Y, Zheng S, Xu Y, Xiao X, Xue H, Pang H (2018) Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater 12:284–309

    Article  Google Scholar 

  31. Zheng M, Tang H, Li L, Hu Q, Zhang L, Xue H, Pang H (2018) Hierarchically nanostructured transition metal oxides for lithium–ion batteries. Adv Sci 5:1700592

    Article  Google Scholar 

  32. Ni L, Zhao G, Wang Y, Wu Z, Wang W, Liao Y, Yang G, Diao G (2017) Coaxial carbon/MnO2 hollow nanofibers as sulfur hosts for high-performance lithium–sulfur batteries. Chem Asian J 12:3128–3134

    Article  Google Scholar 

  33. Liu Z, Xu K, Sun H, Yin S (2015) One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 11:2182–2191

    Article  Google Scholar 

  34. Yuan G, Jin H, Jin Y, Wu L (2018) Hybrids of MnO2 nanoparticles anchored on graphene sheets as efficient sulfur hosts for high-performance lithium sulfur batteries. J Solid State Electrochem 22:693–703

    Article  Google Scholar 

  35. Sun W, Ou X, Yue X, Yang Y, Wang Z, Rooney D, Sun K (2016) A simply effective double-coating cathode with MnO2 nanosheets/graphene as functionalized interlayer for high performance lithium–sulfur batteries. Electrochim Acta 207:198–206

    Article  Google Scholar 

  36. He J, Zhou K, Chen Y, Xu C, Lin J, Zhang W (2016) Wrinkled sulfur@graphene microspheres with high sulfur loading as superior-capacity cathode for Li–S batteries. Mater Today Energy 1–2:11–16

    Article  Google Scholar 

  37. Liu L-J, Chen Y, Zhang Z-F, You X-L, Walle MD, Li Y-J, Liu Y-N (2016) Electrochemical reaction of sulfur cathodes with Ni foam current collector in Li–S batteries. J Power Sources 325:301–305

    Article  Google Scholar 

  38. Ling B, Chen A, Liu W, Liu K, Hu H, Zhang J (2018) Simply and rapidly synthesized composites of MnO2 nanosheets anchoring on carbon nanotubes as efficient sulfur hosts for Li–S batteries. Mater Lett 218:321–324

    Article  Google Scholar 

  39. Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162

    Article  Google Scholar 

  40. Ye C, Zhang L, Guo C, Li D, Vasileff A, Wang H, Qiao S-Z (2017) A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium–sulfur batteries. Adv Energy Mater 27:1702524

    Google Scholar 

  41. Liu J, Wang C, Liu B, Ke X, Liu L, Shi Z, Zhang H, Guo Z (2017) Rational synthesis of MnO2 @CMK/S composite as cathode materials for lithium–sulfur batteries. Mater Lett 195:236–239

    Article  Google Scholar 

  42. Zhao X, Wang H, Zhai G, Wang G (2017) Facile assembly of 3D porous reduced graphene oxide/MnO2 nanosheets-S aerogels as efficient polysulfide adsorption sites for high-performance lithium–sulfur batteries. Chem Eur J 23:7037–7045

    Article  Google Scholar 

  43. Shen J, Liu J, Liu Z, Hu R, Liu J, Zhu M (2018) Nanoconfined oxidation synthesis of N-doped carbon hollow spheres and MnO2 encapsulated sulfur cathode for superior Li–S batteries. Chemistry (Easton) 24:4573–4582

    Google Scholar 

  44. Ni L, Zhao G, Yang G, Niu G, Chen M, Diao G (2017) Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium-sulfur batteries. ACS Appl Mater Interfaces 9:34793–34803

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support from National Natural Science Foundation of China (Nos. 21676304 and 21636010), the Hunan Provincial Science and Technology Plan Project (No. 2016TP1007) and Open-End fund for the valuable and precision Instruments of Central South University (No. CSUZC201728).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yajuan Li or You-Nian Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walle, M.D., Zeng, K., Zhang, M. et al. Soft template synthesis of acetylene black/manganese dioxide nanosheets composites as efficient sulfur hosts for lithium–sulfur batteries. J Mater Sci 53, 14608–14618 (2018). https://doi.org/10.1007/s10853-018-2670-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2670-0

Keywords

Navigation