Skip to main content
Log in

Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two types of hierarchical mesoporous CuS nanospheres, i.e., solid spheres (SSs) and hollow spheres (HSs), were controllably synthesized by a facile and green microwave-assisted wet chemical process, using copper acetate and thiourea aqueous solutions as precursors without a surfactant or template. The crystal structures, morphologies and photocatalytic properties of the products were characterized by various techniques. The results indicated that CuS SSs of 150 ± 50 nm in diameter are made of nanograins of about 10 nm in size, whereas CuS HSs of 400 ± 100 nm in outer-diameter are the assembly of ultrathin nanosheets in thickness of about 6 nm. The as-obtained both CuS architectures exhibit far superior dye degradation properties than commercial CuS powder for the decomposition of organic dyes including rhodamine B, methylene blue and malachite green with the help of hydrogen peroxide under visible light. Specially, using CuS HSs as catalyst, the decoloring rates of three organic dyes catalyst reach above 90% after just 1 min of irradiation and are approaching 100% after 20 min of irradiation, suggesting a fast and efficient photocatalytic activity and a promising application in industrial wastewater purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Zou Z, Ye J, Sayama K, Arakawa H (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414:625–627

    Article  Google Scholar 

  2. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  Google Scholar 

  3. Jin X, Ye L, Xie H (2017) Bismuth-rich bismuth oxyhalides for environmental and energy photocatalysis. Coord Chem Rev 349:84–101

    Article  Google Scholar 

  4. Liu Q, Zhou Y, Kou J, Chen X, Tian Z, Gao J, Yan S, Zou Z (2010) High-yield synthesis of ultralong and ultrathin Zn2GeO4 nanoribbons toward improved photocatalytic reduction of CO2 into renewable hydrocarbon fuel. J Am Chem Soc 132:14385–14387

    Article  Google Scholar 

  5. Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Govind Pal T (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid-liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44:6313–6318

    Article  Google Scholar 

  6. Liu S-Q, Wen H-R, Ying G, Zhu Y-W, Fu X-Z, Sun R, Wong C-P (2018) Amorphous Ni(OH) 2 encounter with crystalline CuS in hollow spheres: a mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis. Nano Energy 44:7–14

    Article  Google Scholar 

  7. Venkadesh A, Radhakrishnan S, Mathiyarasu J (2017) Eco-friendly synthesis and morphology-dependent superior electrocatalytic properties of CuS nanostructures. Electrochim Acta 246:544–552

    Article  Google Scholar 

  8. Deng C, Hu H, Ge X, Han C, Zhao D, Shao G (2011) One-pot sonochemical fabrication of hierarchical hollow CuO submicrospheres. Ultrason Sonochem 18:932–937

    Article  Google Scholar 

  9. Deng C, Ge X, Hu H, Yao L, Han C, Zhao D (2014) Template-free and green sonochemical synthesis of hierarchically structured CuS hollow microspheres displaying excellent Fenton-like catalytic activities. CrystEngComm 16:2738–2745

    Article  Google Scholar 

  10. Deng C, Hu H, Shao G, Han C (2010) Facile template-free sonochemical fabrication of hollow ZnO spherical structures. Mater Lett 64:852–855

    Article  Google Scholar 

  11. Han C, Zhao D, Deng C, Hu K (2012) A facile hydrothermal synthesis of porous magnetite microspheres. Mater Lett 70:70–72

    Article  Google Scholar 

  12. Deng C, Guan H (2013) Fabrication of hollow inorganic fullerene-like BiOBr eggshells with highly efficient visible light photocatalytic activity. Mater Lett 107:119–122

    Article  Google Scholar 

  13. Hu H, Xu J, Deng C, Ge X (2014) Hierarchical mesoporous MoO2 hollow microspheres: synthesis, mechanism and application in removing Cr(VI) from wastewater. Mater Res Bull 51:402–410

    Article  Google Scholar 

  14. Huang Y, Xiao H, Chen S, Wang C (2009) Preparation and characterization of CuS hollow spheres. Ceram Int 35:905–907

    Article  Google Scholar 

  15. Qi H, Huang J, Cao L, Wu J, Li J (2012) Controlled synthesis and optical properties of doughnut-aggregated hollow sphere-like CuS. Ceram Int 38:6659–6664

    Article  Google Scholar 

  16. Heydari H, Moosavifard SE, Elyasi S, Shahraki M (2017) Nanoporous CuS nano-hollow spheres as advanced material for high-performance supercapacitors. Appl Surf Sci 394:425–430

    Article  Google Scholar 

  17. Liu J, Xue D (2009) Solvothermal synthesis of CuS semiconductor hollow spheres based on a bubble template route. J Cryst Growth 311:500–503

    Article  Google Scholar 

  18. Jiang D, Hu W, Wang H, Shen B, Deng Y (2011) Microemulsion template synthesis of copper sulfide hollow spheres at room temperature. Colloids Surf, A 384:228–232

    Article  Google Scholar 

  19. Jiang D, Hu W, Wang H, Shen B, Deng Y (2011) A microemulsion-template-interfacial-reaction route to copper sulfide hollow spheres. J Colloid Interface Sci 357:317–321

    Article  Google Scholar 

  20. Liu X, Ai L, Jiang J (2015) Interconnected porous hollow CuS microspheres derived from metal-organic frameworks for efficient adsorption and electrochemical biosensing. Powder Technol 283:539–548

    Article  Google Scholar 

  21. Feng F, Li K, Li Y, Ma Z (2017) Synthesis of hollow CuS and PdS via microwave-assisted cation exchange. J Nanosci Nanotechnol 17:3615–3619

    Article  Google Scholar 

  22. He Y, Yu X, Zhao X (2007) Synthesis of hollow CuS nanostructured microspheres with novel surface morphologies. Mater Lett 61:3014–3016

    Article  Google Scholar 

  23. Thongtem T, Phuruangrat A, Thongtem S (2009) Formation of CuS with flower-like, hollow spherical, and tubular structures using the solvothermal-microwave process. Curr Appl Phys 9:195–200

    Article  Google Scholar 

  24. Hu H, Deng C, Zhang K, Yin P (2012) Facile microwave-assisted synthesis of PbS nanotubes. Micro Nano Lett 7:464–466

    Article  Google Scholar 

  25. Deng C, Tian X (2013) Facile microwave-assisted aqueous synthesis of CdS nanocrystals with their photocatalytic activities under visible lighting. Mater Res Bull 48:4344–4350

    Article  Google Scholar 

  26. Deng C, Guan H, Tian X (2013) Novel Bi19S27Br 3 superstructures: facile microwave-assisted aqueous synthesis and their visible light photocatalytic performance. Mater Lett 108:17–20

    Article  Google Scholar 

  27. Hu H, Chen G, Deng C, Qian Y, Wang M, Zheng Q (2016) Green microwave-assisted synthesis of hierarchical NiO architectures displaying a fast and high adsorption behavior for Congo red. Mater Lett 170:139–141

    Article  Google Scholar 

  28. Rahmani A, Rahmani H, Zonouzi A (2017) Synthesis of copper sulfides with different morphologies in DMF and water: catalytic activity for methyl orange reduction. Mater Res Express 4:125024

    Article  Google Scholar 

  29. Li H, Wang Y, Jiang J, Zhang Y, Peng Y, Zhao J (2017) CuS microspheres as high-performance anode material for Na-ion batteries. Electrochim Acta 247:851–859

    Article  Google Scholar 

  30. Li H, Wang Y, Huang J, Zhang Y, Zhao J (2017) Microwave-assisted synthesis of CuS/graphene composite for enhanced lithium storage properties. Electrochim Acta 225:443–451

    Article  Google Scholar 

  31. Chen X, Wang Z, Wang X, Zhang R, Liu X, Lin W, Qian Y (2004) Synthesis of novel copper sulfide hollow spheres generated from copper (II)–thiourea complex. J Cryst Growth 263:570–574

    Article  Google Scholar 

  32. He W, Jia H, Li X, Lei Y, Li J, Zhao H, Mi L, Zhang L, Zheng Z (2012) Understanding the formation of CuS concave superstructures with peroxidase-like activity. Nanoscale 4:3501–3506

    Article  Google Scholar 

  33. Basu M, Sinha AK, Pradhan M, Sarkar S, Negishi Y, Pal T (2010) Evolution of hierarchical hexagonal stacked plates of CuS from liquid—liquid interface and its photocatalytic application for oxidative degradation of different dyes under indoor lighting. Environ Sci Technol 44:6313–6318

    Article  Google Scholar 

  34. Liu B, Xu W, Sun T, Chen M, Tian L, Wang J (2014) Efficient visible light photocatalytic activity of CdS on (001) facets exposed to BiOCl. New J Chem 38:2273

    Article  Google Scholar 

  35. He S, Wang GS, Lu C, Luo X, Wen B, Cao L, Guo MS (2013) Controllable fabrication of CuS hierarchical nanostructures and their optical, photocatalytic, and wave absorption properties. ChemPlusChem 78:250–258

    Article  Google Scholar 

  36. Hu H, Wang M, Deng C, Chen J, Wang A, Le H (2018) Satellite-like CdS nanoparticles anchoring onto porous NiO nanoplates for enhanced visible-light photocatalytic properties. Mater Lett 224:75–77

    Article  Google Scholar 

  37. Sakthivel S, Kisch H (2003) Daylight photocatalysis by carbon-modified titanium dioxide. Angew Chem Int Ed 42:4908–4911

    Article  Google Scholar 

  38. Mi L, Wei W, Zheng Z, Gao Y, Liu Y, Chen W, Guan X (2013) Tunable properties induced by ion exchange in multilayer intertwined CuS microflowers with hierarchal structures. Nanoscale 5:6589–6598

    Article  Google Scholar 

  39. Li Z, Mi L, Chen W, Hou H, Liu C, Wang H, Zheng Z, Shen C (2012) Three-dimensional CuS hierarchical architectures as recyclable catalysts for dye decolorization. CrystEngComm 14:3965–3971

    Article  Google Scholar 

  40. Jiang D, Hu W, Wang H, Shen B, Deng Y (2012) Controlled synthesis of hierarchical CuS architectures by a recrystallization growth process in a microemulsion system. J Mater Sci 47:4972–4980. https://doi.org/10.1007/s10853-012-6372-8

    Article  Google Scholar 

  41. Wei T-Y, Wang Y-Y, Wan C-C (1990) Photocatalytic oxidation of phenol in the presence of hydrogen peroxide and titanium dioxide powders. J Photochem Photobiol A 55:115–126

    Article  Google Scholar 

  42. Wong C, Chu W (2003) The hydrogen peroxide-assisted photocatalytic degradation of alachlor in TiO2 suspensions. Environ Sci Technol 37:2310–2316

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (1808085MB40), the Program of Study Abroad for Excellent Young Scholar of Anhui Province (gxfxZD2016221), the Key Projects of Support Program for Outstanding Young Talents of Anhui Province (gxyqZD2016151), the Natural Science Foundation of Anhui Province Educational Committee (KJ2018A0511, KJ2015A145) and the Special Foundation for Scientists of Hefei University (15RC06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanmei Hu or Chonghai Deng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wang, J., Deng, C. et al. Microwave-assisted controllable synthesis of hierarchical CuS nanospheres displaying fast and efficient photocatalytic activities. J Mater Sci 53, 14250–14261 (2018). https://doi.org/10.1007/s10853-018-2669-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2669-6

Keywords

Navigation