Skip to main content
Log in

Preparation, characterization and catalytic oxidation properties of silica composites immobilized with cationic metalloporphyrins

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, the metalloporphyrins Co(II) (5, 10, 15, 20-tetra (4-(3-(N-ethyl-4-pyridyl)pyrazolyl)phenyl)porphyrin) (CoTEtPyP) and Mn(III) (5, 10, 15, 20-tetra(4-(3-(N-ethyl-4-pyridyl)pyrazolyl)phenyl)porphyrin) (MnTEtPyP(OAc)) were synthesized and characterized spectroscopically. The cationic metalloporphyrins were firstly immobilized on the surface of SiO2 by electrostatic attractions with hydrothermal method to get the gels. Then, the gels were extracted by supercritical CO2 to remove the redundant solvent molecules and the unreacted metal salt. The structures and properties of porphyrin–SiO2 porous composites (PSC1 and PSC2) were characterized by Fourier transform infrared spectroscopy, ultraviolet–visible spectroscopy, scanning electron microscopy, transmission electron microscope, powder X-ray diffraction, thermalgravimetric analysis and nitrogen sorption measurements. N2 absorptions have verified that the porous materials have large BET surface area and big N2 uptake capacity. The composites also have shown higher specific surface area and superior thermal stability. The catalytic activities of the new PSCs to the ethylbenzene oxidation carried out indicated that both of them exhibit highly selectivity of acetophenone (> 99%) with the conversion of 87.6% (PSC1) and 93.0% (PSC2), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Wang RX, Gao JB, Jiao WZ (2009) A novel method for immobilization of Co tetraphenylporphyrins on P(4VP-co-St)/SiO2: efficient catalysts for aerobic oxidation of ethylbenzenes. Appl Surf Sci 255:4109–4113

    Article  Google Scholar 

  2. Suslick KS, Bhyrappa P, Chou JH, Kosal ME, Nakagaky S, Smithenry DW, Wilson SR (2005) Microporous porphyrin solids. Acc Chem Res 38:283–291

    Article  Google Scholar 

  3. Farha OK, Shultz AM, Sarjeant AA, Nguyen ST, Hupp JT (2011) Active-site-accessible, porphyrinic metal-organic framework materials. J Am Chem Soc 133:5652–5655

    Article  Google Scholar 

  4. Fateeva A, Devautour-Vinot S, Heymans N, Devic T, Grenéche J, Wuttke S, Miller S, Lago A et al (2011) Series of porous 3-D coordination polymers based on iron(III) and porphyrin derivatives. Chem Mater 23:4641–4651

    Article  Google Scholar 

  5. Fagadar-Cosma E, Mirica MC, Balcu I, Bucovicean C, Cretu C, Armeanu I, Fagadar-Cosma G (2009) Syntheses, spectroscopic and AFM characterization of some manganese porphyrins and their hybrid silica nanomaterials. Molecules 14:1370–1388

    Article  Google Scholar 

  6. Shultz AM, Farha OK, Hupp JT, Nguyen ST (2011) Synthesis of catalytically active porous organic polymers from metalloporphyrin building blocks. Chem Sci 2:686–689

    Article  Google Scholar 

  7. Alkordi MH, Liu Y, Larsen RW, Eubank JF, Eddaoudi M (2008) Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. J Am Chem Soc 130:12639–12641

    Article  Google Scholar 

  8. Fidalgo-Marijuan A, Barandika G, Bazán B, Urtiaga MK, Arriortua MI (2011) Self-assembly of iron TCPP (meso-tetra(4-carboxyphenyl)porphyrin) into a chiral 2D coordination polymer. Polyhedron 30:2711–2716

    Article  Google Scholar 

  9. Guo CC, Song JX, Chen XB, Jiang GF (2000) A new evidence of the high-valent oxo–metal radical cation intermediate and hydrogen radical abstract mechanism in hydrocarbon hydroxylation catalyzed by metalloporphyrins. J Mol Catal A Chem 157:31–40

    Article  Google Scholar 

  10. Fu L, Chen Y, Liu Z (2015) Cobalt catalysts embedded in N-doped carbon derived from cobalt porphyrin via a one-pot method for ethylbenzene oxidation. J Mol Catal A Chem 408:91–97

    Article  Google Scholar 

  11. Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34:40–48

    Article  Google Scholar 

  12. Cardoso WS, Francisco MSP, Landers R, Gushikem Y (2005) Co (II) porphyrin absorbed on SiO2/SnO2/phosphate prepared by the sol-gel method application in electroreduction of dissolved dioxygen. Electrochim Acta 50:4378–4384

    Article  Google Scholar 

  13. Krishnakumar B, Balakrishna A, Nawabjan SA, Pandiyan V, Aguiar A, Sobral AJFN (2017) Solar and visible active amino porphyrin/ZnO for the degradation of naphthol blue black. J Phys Chem Solid 111:364–371

    Article  Google Scholar 

  14. Yoshida A, Kakegawa N, Ogawa M (2003) Adsorption of a cationic porphyrin onto mesoporous silicas. Res Chem Intermed 29:721–731

    Article  Google Scholar 

  15. Fujiwara ST, Gushikem Y, Pessoa CA, Nakagaki S (2005) Electrochemical studies of a new iron porphyrin entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2/Al2O3 surface. Electroanalysis 17:783–788

    Article  Google Scholar 

  16. Kim JY, Lee KY, Kim S, Lee SJ (2015) Preparation of Mn(III)-porphyrin-immobilized Fe3O4@SiO2 mesoparticles and their use in heterogeneous catalysis of styrene epoxidation. Bull Korean Chem Soc 36:1936–1939

    Article  Google Scholar 

  17. Pessôa CA, Gushikem Y, Nakagakib S (2002) Cobalt porphyrin immobilized on a niobium (V) oxide grafted-silica gel surface: study of the catalytic oxidation of hydrazine. Electroanalysis 14:1072–1076

    Article  Google Scholar 

  18. Ryu S, Liu L, Berciaud S, Yu Y, Liu H, Kim P, Flynn GW, Brus LE (2010) Atmospheric oxygen binding and hole doping in deformed graphene on a SiO2 substrate. Nano Lett 10:4944–4951

    Article  Google Scholar 

  19. Hofrichter J, Szafranek BN, Otto M, Echtermeyer TJ, Baus M, Majerus A, Geringer V, Ramsteiner M, Kurz H (2010) Synthesis of graphene on silicon dioxide by a solid carbon source. Nano Lett 10:36–42

    Article  Google Scholar 

  20. Whittaker JD, Minot ED, Tanenbaum DM, McEuen PL, Davis RC (2006) Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate. Nano Lett 5:953–957

    Article  Google Scholar 

  21. Scherwitzl B, Lukesch W, Hirzer A, Albering J, Leising G, Resel R, Winkler A (2013) Initial steps of rubicene film growth on silicon dioxide. J Phys Chem C 117:4115–4123

    Article  Google Scholar 

  22. Zhang Z, Li J, Yao Y, Sun S (2015) Permanently porous Co(II) porphyrin-based hydrogen bonded framework for gas adsorption and catalysis. Cryst Growth Des 15:5028–5033

    Article  Google Scholar 

  23. Kishida T, Fujita N, Sada K, Shinkai S (2005) Porphyrin gels reinforced by sol-gel reaction via the organogel phase. Langmuir 21:9432–9439

    Article  Google Scholar 

  24. Wang Z, Yuan S, Mason A, Reprogle B, Liu D, Yu L (2012) Nanoporous porphyrin polymers for gas storage and separation. Macromolecules 45:7413–7419

    Article  Google Scholar 

  25. Modak A, Nandi M, Mondal J, Bhaumik A (2012) Porphyrin based porous organic polymers: novel synthetic strategy and exceptionally high CO2 adsorption capacity. Chem Commun 48:248–250

    Article  Google Scholar 

  26. Takeuchi M, Tanaka S, Shinkai S (2005) On the influence of porphyrin p–p stacking on supramolecular chirality created in the porphyrin-based twisted tape structure. Chem Commun 44:5539–5541

    Article  Google Scholar 

  27. Ahrenholtz SR, Epley CC, Morris AJ (2014) Solvothermal preparation of an electrocatalytic metalloporphyrin MOF thin film and its redox hopping charge-transfer mechanism. J Am Chem Soc 136:2464–2472

    Article  Google Scholar 

  28. Wang Z, Lybarger LE, Wang W, Medforth CJ, Miller JE, Shelnutt JA (2008) Monodisperse porphyrin nanospheres synthesized by coordination polymerization. Nanotechnology 19:395604

    Article  Google Scholar 

  29. Luca GD, Romeo A, Villari V, Micali N, Foltran I, Foresti I, Lesci IG, Roveri N, Zuccheri T, Scolaro LM (2009) Self-organizing functional materials via ionic self-assembly: porphyrins hand J-aggregates on synthetic chrysotile nanotubes. J Am Chem Soc 131:6920–6921

    Article  Google Scholar 

  30. Valicsek Z, Horváth O (2013) Application of the electronic spectra of porphyrins for analytical purposes: the effects of metal ions and structural distortions. Microchem J 107:47–62

    Article  Google Scholar 

  31. Rosenthal RA, Huffman KD, Fisette LW, Damphousse CW, Callaway WB, Malfroy B, Doctrow SR (2009) Orally available Mn porphyrins with superoxide dismutase and catalase activities. J Biol Inorg Chem 14:979–991

    Article  Google Scholar 

  32. Yoo J, Park N, Park JH, Park JH, Kang S, Lee SM, Kim HJ, Jo H, Park J, Son SU (2015) Magnetically separable microporous Fe–porphyrin networks for catalytic carbene insertion into N–H bonds. ACS Catal 5:350–355

    Article  Google Scholar 

  33. Farha OK, Malliakas CD, Kanatzidis MG, Hupp JT (2010) Control over catenation in metal-organic frameworks via rational design of the organic building block. J Am Chem Soc 132:950–952

    Article  Google Scholar 

  34. Zhao X, Yuan L, Zhang Z, Wang Y, Yu Q, Li J (2016) Synthetic methodology for the fabrication of porous porphyrin materials with metal-organic-polymer Aerogels. Inorg Chem 55:5287–5296

    Article  Google Scholar 

  35. Groen JC, Peffer LAA, pérez-Ramírez J (2003) Pore size determination in modified micro-and mesoporous materials. pitfalls and limitations in gas adsorption data analysis. Microporous Mesoporous Mater 60:1–17

    Article  Google Scholar 

  36. Ohmura T, Usuki A, Fukumori K, Ohta T, Ito M, Tatsumi K (2006) New porphyrin-based metal-organic framework with high porosity: 2-D infinite 22.2-Å square-grid coordination network. Inorg Chem 45:7988–7990

    Article  Google Scholar 

  37. Zhang JL, Huang JS, Che CM (2006) Oxidation chemistry of poly(ethylene glycol)-supported carbonylruthenium(ii) and dioxoruthenium(vi) meso-tetrakis(pentafluorophenyl)porphyrin. Chem Eur J 12:3020–3031

    Article  Google Scholar 

  38. Meunier B (2000) In biomimetic oxidations catalyzed by transition metal complexes. Imperial College Press, London

    Book  Google Scholar 

  39. Imran G, Pachamuthu MP, Maheswari R, Ramanathan A, Sardhar Basha SJ (2012) Catalytic activity of MnTUD-1 for liquid phase oxidation of ethylbenzene with tert-butyl hydroperoxide. J Porous Mater 19:677–682

    Article  Google Scholar 

  40. Ricca C, Labat F, Russo N, Adamo C, Sicilia E (2014) Oxidation of ethylbenzene to acetophenone with N-doped graphene: insight from theory. J Phys Chem C 118:12275–12284

    Article  Google Scholar 

  41. Gutmann B, Elsner P, Roberge D, Kappe CO (2013) Homogeneous liquid-phase oxidation of ethylbenzene to acetophenone in continuous flow mode. ACS Catal 3:2669–2676

    Article  Google Scholar 

  42. Qiu Y, Yang C, Huo J, Liu Z (2016) Synthesis of Co-N-C immobilized on carbon nanotubes for ethylbenzene oxidation. J Mol Catal A Chem 424:276–282

    Article  Google Scholar 

  43. Jiang W, Yang J, Liu YY, Ma JF (2016) Porphyrin-based mixed-valent Ag(I)/Ag(II) and Cu(I)/Cu(II) networks as efficient heterogeneous catalysts for the azide–alkyne ‘‘click’’ reaction and promising oxidation of ethylbenzene. Chem Commun 52:1373–1376

    Article  Google Scholar 

  44. DeVos DE, Sels BF, Jacobs PA (2001) Immobilization of homogeneous oxidation catalysts. Adv Catal 46:1–87

    Google Scholar 

  45. Zou C, Zhang Z, Xu X, Gong Q, Li J, Wu CD (2011) A multifunctional organic–inorganic hybrid structure based on MnIII-porphyrin and polyoxometalate as a highly effective dye scavenger and heterogenous catalyst. J Am Chem Soc 134:87–90

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China [Grant Numbers 21671158, 21271148 and 21773184] for the financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Wang or Jun Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 12599 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Wang, Y., Xu, Y. et al. Preparation, characterization and catalytic oxidation properties of silica composites immobilized with cationic metalloporphyrins. J Mater Sci 53, 14241–14249 (2018). https://doi.org/10.1007/s10853-018-2662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2662-0

Keywords

Navigation