Skip to main content
Log in

Production and characterization of sustainable poly(lactic acid)/functionalized-eggshell composites plasticized by epoxidized soybean oil

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

To improve the intrinsic brittleness and crystallization capacity of poly(lactic acid) (PLA), fully sustainable PLA composites were prepared. The biodegradable PLA composites consisted of 10 wt% epoxidized soybean oil (ESO) and different amounts of functional eggshell (FES) with surface modified with calcium phenylphosphonate (PPCa) were prepared by melt blending. Mechanical and crystallization behavior were studied in terms of the weight percentage of FES. ESO-plasticized PLA showed an excellent tensile toughness with the elongation at break increased over than 160% compared to 6% of pure PLA. The elongation at break for PLA composites was still higher than 70% even filled with 30 wt% FES. Besides, the tensile and storage moduli of PLA/ESO/FES composites did not suffer significant deterioration as compared with pure PLA. For cold crystallization behavior, FES with surface modified by PPCa as a good nucleating agent improved the nucleating ability of PLA. The rates of nonisothermal and isothermal cold crystallization of PLA were improved due to the synergistic effect of plasticization and nucleation. The nonisothermal cold crystallization peak temperature (Tcc) of PLA composites decreases considerably from 118.7 °C (for pure PLA) to 90 °C. The crystallization half-time of PLA composites is lower than 10 min compared with 162 min of pure PLA after isothermal crystallized at 75 °C. As a consequence, it is encouraging that ESO and FES exhibit great viability for modifying the mechanical and crystallization properties of PLA matrix, which make PLA a promising sustainable alternative to petroleum-based polymers in conventional fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

PLA:

Poly(lactic acid)

ESO:

Epoxidized soybean oil

FES:

Functional eggshell

PPCa:

Calcium phenylphosphonate

PDLA:

Poly(d-lactic acid)

PEG:

Polyethylene glycol

PPG:

Poly(propylene glycol)

SEM:

Field-emission scanning electron microscopy

DMA:

Dynamic mechanical analysis

DSC:

Differential scanning calorimeter

References

  1. Li YD, Fu QQ, Wang M, Zeng JB (2017) Morphology, crystallization and rheological behavior in poly(butylene succinate)/cellulose nanocrystal nanocomposites fabricated by solution coagulation. Carbohydr Polym 164:75–82

    Article  Google Scholar 

  2. Ma XF, Yu JG, Wang N (2006) Compatibility characterization of poly(lactic acid)/poly(propylene carbonate) blends. J Polym Sci Part B Polym Phys 44(1):94–101

    Article  Google Scholar 

  3. Saeidlou S, Huneault MA, Li H, Park CB (2012) Poly(lactic acid) crystallization. Prog Polym Sci 37:1657–1677

    Article  Google Scholar 

  4. Raquez JM, Habibi Y, Murariu M, Dubois P (2013) Polylactide (PLA)-based nanocomposites. Prog Polym Sci 38(10–11):1504–1542

    Article  Google Scholar 

  5. Quiles-Carrillo L, Montanes N, Sammon C, Balart R, Torres-Giner S (2018) Compatibilization of highly sustainable polylactide/almond shell flour composites by reactive extrusion with maleinized linseed oil. Ind Crops Prod 111:878–888

    Article  Google Scholar 

  6. Frone AN, Panaitescu DM, Chiulan I, Nicolae CA, Vuluga Z, Vitelaru C, Damian CM (2016) The effect of cellulose nanofibers on the crystallinity and nanostructure of poly(lactic acid) composites. J Mater Sci 51(21):9771–9791. https://doi.org/10.1007/s10853-016-0212-1

    Article  Google Scholar 

  7. Orue A, Eceiza A, Arbelaiz A (2018) Preparation and characterization of poly(lactic acid) plasticized with vegetable oils and reinforced with sisal fibers. Ind Crops Prod 112:170–180

    Article  Google Scholar 

  8. Fang H, Xie Q, Wei H, Xu P, Ding Y (2017) Physical gelation and macromolecular mobility of sustainable polylactide during isothermal crystallization. J Polym Sci Part B Polym Phys 55(16):1235–1244

    Article  Google Scholar 

  9. Zhang JM, Duan YX, Sato H, Tsuji H, Noda I, Yan SK, Ozaki AY (2005) Crystal modifications and thermal behavior of poly(l-lactic acid) revealed by infrared spectroscopy. Macromolecules 38:8012–8021

    Article  Google Scholar 

  10. Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255

    Article  Google Scholar 

  11. Li HB, Huneault AM (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48:6855–6866

    Article  Google Scholar 

  12. Anderson SK, Hillmyer AM (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:2030–2035

    Article  Google Scholar 

  13. He Y, Xu Y, Wei J, Fan Z, Li S (2008) Unique crystallization behavior of PLLA-PDLA stereocomplex depending on initial melt states. Polymer 49:5670–5675

    Article  Google Scholar 

  14. Bai H, Liu H, Bai D, Zhang Q, Wang K, Deng H, Chen F, Fu Q (2014) Enhancing the melt stability of polylactide stereocomplexes using a solid-state cross-linking strategy during a melt-blending process. Polym Chem 5(20):5985–5993

    Article  Google Scholar 

  15. Zhao H, Bian Y, Li Y, Dong Q, Han C, Dong L (2014) Bioresource-based blends of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and stereocomplex polylactide with improved rheological and mechanical properties and enzymatic hydrolysis. J Mater Chem A 2(23):8881–8892

    Article  Google Scholar 

  16. Tan BH, Muiruri JK, Li Z, He C (2016) Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng 4(10):5370–5391

    Article  Google Scholar 

  17. Pan P, Liang Z, Cao A, Inoue Y (2009) Layered metal phosphonate reinforced poly(l-lactide) composites with a highly enhanced crystallization rate. ACS Appl Mater Interfaces 1(2):402–411

    Article  Google Scholar 

  18. Zhang R, Russo PA, Feist M, Amsalem P, Koch N, Pinna N (2017) Synthesis of nickel phosphide electrocatalysts from hybrid metal phosphonates. ACS Appl Mater Interfaces 9(16):14013–14022

    Article  Google Scholar 

  19. Wang S, Han C, Bian J, Han L, Wang X, Dong L (2011) Morphology, crystallization and enzymatic hydrolysis of poly(l-lactide) nucleated using layered metal phosphonates. Polym Int 60(2):284–295

    Article  Google Scholar 

  20. Kong J, Li Y, Bai Y, Li Z, Cao Z, Yu Y, Han C, Dong L (2018) High-performance biodegradable polylactide composites fabricated using a novel plasticizer and functionalized eggshell powder. Int J Biol Macromol 112:46–53

    Article  Google Scholar 

  21. Toro P, Quijada R, Yazdani-Pedram M, Arias JL (2007) Eggshell, a new bio-filler for polypropylene composites. Mater Lett 61(22):4347–4350

    Article  Google Scholar 

  22. Li Y, Xin S, Bian Y, Xu K, Han C, Dong L (2016) The physical properties of poly(l-lactide) and functionalized eggshell powder composites. Int J Biol Macromol 85:63–73

    Article  Google Scholar 

  23. Sinclair RG (1996) The case for polylactic acid as a commodity packaging plastic. J Macromol Sci Pure Appl Chem A33(5):585–597

    Article  Google Scholar 

  24. Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  Google Scholar 

  25. Piorkowska E, Kulinski Z, Galeski A, Masirek R (2006) Plasticization of semicrystalline poly(l-lactide) with poly(propylene glycol). Polymer 47(20):7178–7188

    Article  Google Scholar 

  26. Mohapatra AK, Mohanty S, Nayak SK (2014) Properties and characterization of biodegradable poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay. J Thermoplast Compos Mater 29(4):443–463

    Article  Google Scholar 

  27. Mauck SC, Wang S, Ding W, Rohde BJ, Fortune CK, Yang G, Ahn SK, Robertson ML (2016) Biorenewable tough blends of polylactide and acrylated epoxidized soybean oil compatibilized by a polylactide star polymer. Macromolecules 49:1605–1615

    Article  Google Scholar 

  28. Zhang C, Garrison TF, Madbouly SA, Kessler MR (2017) Recent advances in vegetable oil-based polymers and their composites. Prog Polym Sci 71:91–143

    Article  Google Scholar 

  29. Ali F, Chang YW, Kang SC, Yoon JY (2008) Thermal, mechanical and rheological properties of poly (lactic acid)/epoxidized soybean oil blends. Polym Bull 62(1):91–98

    Article  Google Scholar 

  30. Xu YQ, Qu JP (2009) Mechanical and rheological properties of epoxidized soybean oil plasticized poly(lactic acid). J Appl Polym Sci 112(6):3185–3191

    Article  Google Scholar 

  31. Xiong Z, Dai X, Na H, Tang Z, Zhang R, Zhu J (2015) A toughened PLA/nanosilica composite obtained in the presence of epoxidized soybean oil. J Appl Polym Sci 132(1):41220–41227

    Article  Google Scholar 

  32. Zhao TH, Yuan WQ, Li YD, Weng YX, Zeng JB (2018) Relating chemical structure to toughness via morphology control in fully sustainable sebacic acid cured epoxidized soybean oil toughened polylactide blends. Macromolecules 51(5):2027–2037

    Article  Google Scholar 

  33. Liu GC, He YS, Zeng JB, Li QT, Wang YZ (2014) Fully biobased and supertough polylactide-based thermoplastic vulcanizates fabricated by peroxide-induced dynamic vulcanization and interfacial compatibilization. Biomacromolecules 15(11):4260–4271

    Article  Google Scholar 

  34. Huda MS, Drzal LT, Mohanty AK, Misra M (2007) The effect of silane treated- and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites. Compos Part B Eng 38(3):367–379

    Article  Google Scholar 

  35. Piekarska K, Piorkowska E, Bojda J (2017) The influence of matrix crystallinity, filler grain size and modification on properties of PLA/calcium carbonate composites. Polym Test 62:203–209

    Article  Google Scholar 

  36. Cai J, Xiong Z, Zhou M, Tan J, Zeng F, Meihuma Lin S, Xiong H (2014) Thermal properties and crystallization behavior of thermoplastic starch/poly(varepsilon-caprolactone) composites. Carbohydr Polym 102:746–754

    Article  Google Scholar 

  37. Run M, Song H, Wang S, Bai L, Jia Y (2009) Crystal morphology, melting behaviors and isothermal crystallization kinetics of SCF/PTT composites. Polym Compos 30(1):87–94

    Article  Google Scholar 

  38. Lorenzo AT, Arnal ML, Albuerne J, Müller AJ (2007) DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test 26(2):222–231

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cooperation of Hubei Province and Chinese Academy of Sciences, Jilin Province Science and Technology Agency (20160204030GX); the Changchun Municipal Scientific and Technologic Development (16SS16), and Building of Innovation Team Plan (IG201703N).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyu Han or Yancun Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, J., Han, C., Yu, Y. et al. Production and characterization of sustainable poly(lactic acid)/functionalized-eggshell composites plasticized by epoxidized soybean oil. J Mater Sci 53, 14386–14397 (2018). https://doi.org/10.1007/s10853-018-2656-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2656-y

Keywords

Navigation