Skip to main content

Advertisement

Log in

Wearable supercapacitors based on conductive cotton yarns

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

High-performance fiber- and yarn-shaped supercapacitors based on commonly available fiber materials and production technologies are needed to meet the fast developing electronic textile market. In this investigation, natural cotton and stainless steel fibers (SSFs) are blended to form a conductive yarn for constructing novel high-performance two-ply yarn supercapacitors. The supercapacitors show very high areal capacitance, energy density, flexibility and electrochemical stability. The excellent performance is attributed to the high porosity, high conductivity and distributive metal fiber network formed in the blended yarn, coupled with the high electrochemical efficiency of the nanostructured polypyrrole (PPy) and poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) pseudocapacitance materials. The SSF-cotton blended yarn is economic to produce and retains the flexibility of a normal cotton yarn that is commonly used in apparel textiles. This greatly facilitates the integration of the two-ply yarn supercapacitor into electronic textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

Notes

  1. http://www.researchandmarkets.com/publication/mijobbb/4200865, accessed on May 30, 2017.

References

  1. Chen H, Zeng S, Chen M, Zhang Y, Zheng L, Li Q (2016) Oxygen evolution assisted fabrication of highly loaded carbon nanotube/MnO2 hybrid films for high-performance flexible pseudosupercapacitors. Small 12:2035–2045

    Article  Google Scholar 

  2. Yin H, Zhao S, Wan J, Tang H, Chang L, He L, Zhao H, Gao Y, Tang Z (2013) Three-dimensional graphene/metal oxide nanoparticle hybrids for high-performance capacitive deionization of saline water. Adv Mater 25:6270–6276

    Article  Google Scholar 

  3. Lu C, Wang D, Zhao J, Han S, Chen W (2017) A continuous carbon nitride polyhedron assembly for high-performance flexible supercapacitors. Adv Funct Mater 27:1606219

    Article  Google Scholar 

  4. Li L, Lou Z, Han W, Chen D, Jiang K, Shen G (2017) Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv Mater Technol 2:1600282

    Article  Google Scholar 

  5. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123

    Article  Google Scholar 

  6. Wang Q, Ma Y, Wu Y, Zhang D, Miao M (2017) Flexible asymmetric threadlike supercapacitors based on NiCo2Se4 nanosheet and NiCo2O4/polypyrrole electrodes. ChemSusChem 10:1427–1435

    Article  Google Scholar 

  7. Wang Q, Zhang D, Wu Y, Li T, Zhang A, Miao M (2017) Fabrication of supercapacitors from NiCo2O4 nanowire/carbon-nanotube yarn for ultraviolet photodetectors and portable electronics. Energy Technol 5:1449–1456

    Article  Google Scholar 

  8. Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:3754

    Article  Google Scholar 

  9. Lee J, Shin M, Kim S, Cho H, Spinks G, Wallace G, Lima M, Lepró X, Kozlov M, Baughman R (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970

    Article  Google Scholar 

  10. Wang K, Meng Q, Zhang Y, Wei Z, Miao M (2013) High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater 25:1494–1498

    Article  Google Scholar 

  11. Huang Y, Hu H, Huang Y, Zhu M, Meng W, Liu C, Pei Z, Hao C, Wang Z, Zhi C (2015) From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9:4766–4775

    Article  Google Scholar 

  12. Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8:4571–4579

    Article  Google Scholar 

  13. Fu Y, Cai X, Wu H, Lv Z, Hou S, Peng M, Yu X, Zou D (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24:5713–5718

    Article  Google Scholar 

  14. Wang X, Liu B, Liu R, Wang Q, Hou X, Chen D, Wang R, Shen G (2014) Fiber-based flexible all- solid- state asymmetric supercapacitors for integrated photodetecting system. Angew Chem Int Ed 53:1849–1853

    Article  Google Scholar 

  15. Lu X, Bai Y, Wang R, Sun J (2016) A high-performance flexible and weavable asymmetric fiber-shaped solid-state supercapacitor enhanced by surface modifications of carbon fibers with carbon nanotubes. J Mater Chem A 4:18164–18173

    Article  Google Scholar 

  16. Liu N, Ma W, Tao J, Zhang X, Su J, Li L, Yang C, Gao Y, Golberg D, Bando Y (2013) Cable-type supercapacitors of three-dimensional cotton thread based multi-grade nanostructures for wearable energy storage. Adv Mater 25:4925–4931

    Article  Google Scholar 

  17. Liu L, Yu Y, Yan C, Li K, Zheng Z (2015) Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene-metallic textile composite electrodes. Nat Commun 6:7260

    Article  Google Scholar 

  18. Gao Z, Bumgardner C, Song N, Zhang Y, Li J, Li X (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586

    Article  Google Scholar 

  19. Zhi J, Reiser O, Wang Y, Hu A (2017) From natural cotton thread to sewable energy dense supercapacitors. Nanoscale 9:6406–6416

    Article  Google Scholar 

  20. Yang Y, Huang Q, Niu L, Wang D, Yan C, She Y, Zheng Z (2017) Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv Mater 29:1606679

    Article  Google Scholar 

  21. Das C, Krishnamoorthy K (2016) Flexible microsupercapacitors using silk and cotton substrates. ACS Appl Mater Interfaces 8:29504–29510

    Article  Google Scholar 

  22. Zhou Q, Jia C, Ye X, Tang Z, Wan Z (2016) A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics. J Power Sources 327:365–373

    Article  Google Scholar 

  23. Song K, Ni H, Fan L (2017) Flexible graphene-based composite films for supercapacitors with tunable areal capacitance. Electrochim Acta 235:233–241

    Article  Google Scholar 

  24. Rana M, Asim S, Hao B, Yang S, Ma P (2017) A review of inactive materials and components of flexible lithium-ion batteries. Adv Sustainable Syst 1:1700022

    Article  Google Scholar 

  25. Xie J, Gordon S, Long H, Miao M (2015) Electrical percolation of fibre mixtures. Appl Phys A 121:589–595

    Article  Google Scholar 

  26. Novak P, Muller K, Santhanam K, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97:207–281

    Article  Google Scholar 

  27. Xie J, Gordon S, Long H, Miao M (2016) Twist requirement for blended yarns. J Text Inst 108:852–855

    Article  Google Scholar 

  28. Thomas J, Zhao L, McGillivray D, Leung K (2014) High-efficiency hybrid solar cells by nanostructural modification in PEDOT: PSS with co-solvent addition. J Mater Chem A 2:2383–2389

    Article  Google Scholar 

  29. Wang C, Xi Y, Wang M, Zhang C, Wang X, Yang Q, Li W, Zhang D (2016) Carbon-modified Na2Ti3O7 2H2O nanobelts as redox active materials for high-performance supercapacitor. Nano Energy 28:115–123

    Article  Google Scholar 

  30. Yoo D, Kim J, Kim J (2014) Direct synthesis of highly conductive PEDOT: PSS/graphene composites and their applications in energy harvesting systems. Nano Res 7:717–730

    Article  Google Scholar 

  31. Kim G, Hwang D, Woo S (2012) Thermoelectric properties of nanocomposite thin films prepared with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate) and graphene. Phys Chem Chem Phys 14:3530–3536

    Article  Google Scholar 

  32. Zhang J, Zhao X (2012) Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J Phys Chem C 116:5420–5426

    Article  Google Scholar 

  33. Cho S, Kim M, Jang J (2015) Screen-printable and flexible RuO2 nanoparticle-decorated PEDOT:PSS/graphene nanocomposite with enhanced electrical and electrochemical performances for high-capacity supercapacitor. ACS Appl Mater Interfaces 7:10213–10227

    Article  Google Scholar 

  34. Li Y, Ren G, Zhang Z, Teng C, Wu Y, Lu X, Zhu Y, Jiang L (2016) A strong and highly flexible aramid nanofibers/PEDOT: PSS film for all-solid-state supercapacitors with superior cycling stability. J Mater Chem A 4:17324–17332

    Article  Google Scholar 

  35. Alemu D, Wei H, Ho K, Chu CW (2012) Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5:9662–9671

    Article  Google Scholar 

  36. Liu Y, Hwang B, Jian W, Santhanam R (2000) In situ cyclic voltammetry-surface-enhanced Raman spectroscopy: studies on the doping-undoping of polypyrrole film. Thin Solid Film 374:85–91

    Article  Google Scholar 

  37. Liu Y, Wang B (2000) Identification of oxidized polypyrrole on Raman spectrum. Synth Met 113:203–207

    Article  Google Scholar 

  38. Chen F, Shi G, Fu M, Qu L, Hong X (2003) Raman spectroscopic evidence of thickness dependence of the doping level of electrochemically deposited polypyrrole film. Synth Met 132:125–132

    Article  Google Scholar 

  39. Yu N, Yin H, Zhang W, Liu Y, Tang Z, Zhu M (2016) High-performance fiber-shaped all-solid-state asymmetric supercapacitors based on ultrathin MnO2 nanosheet/carbon fiber cathodes for wearable electronics. Adv Energy Mater 6:1501458

    Article  Google Scholar 

  40. Li Y, Wang X, Yang Q, Javed MS, Liu Q, Xu W, Hu C, Wei D (2017) Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim Acta 234:63–70

    Article  Google Scholar 

  41. Noh J, Yoon C-M, Kim Y, Jang J (2017) High performance asymmetric supercapacitor twisted from carbon fiber/MnO2 and carbon fiber/MoO3. Carbon 116:470–478

    Article  Google Scholar 

  42. Li Y, Wang X, Yang Q, Javed MS, Liu Q, Xu W, Hu C, Wei D (2017) Ultra-fine CuO nanoparticles embedded in three-dimensional graphene network nano-structure for high-performance flexible supercapacitors. Electrochim Acta 234:63–70

    Article  Google Scholar 

  43. Xu H, Hu X, Sun Y, Yang H, Liu X, Huang Y (2015) Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res 8:1148–1158

    Article  Google Scholar 

  44. Su F, Lv X, Miao M (2015) High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3O4 and NiO nanoparticles. Small 11:854–861

    Article  Google Scholar 

  45. Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27:230–237

    Article  Google Scholar 

  46. Wang Q, Wu Y, Li T, Zhang D, Miao M, Zhang A (2016) High performance two-ply carbon nanocomposite yarn supercapacitors enhanced with a platinum filament and in situ polymerized polyaniline nanowires. J Mater Chem A 4:3828–3834

    Article  Google Scholar 

  47. Yuan D, Li B, Cheng J, Guan Q, Wang Z, Ni W, Li C, Liu H, Wang B (2016) Twisted yarns for fiber-shaped supercapacitors based on wet spun PEDOT: PSS fibers from aqueous coagulation. J Mater Chem A 4:11616–11624

    Article  Google Scholar 

  48. Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, Yang S (2015) Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy 11:568–578

    Article  Google Scholar 

  49. Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28:3646–3652

    Article  Google Scholar 

  50. Xie J, Long H, Miao M (2016) High sensitivity knitted fabric strain sensors. Smart Mater Struct 25:105008

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support of the National Natural Science Foundation of China (51702369), Hubei Major Projects of Technological Innovation (2017AAA131), Hubei Provincial Natural Science Foundation of China (2018CFA023), the Central College Fund (CZQ18003) and Innovative training program for College Students (XCX17025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiufan Wang, Daohong Zhang or Menghe Miao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 17732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Wang, Q., Liang, X. et al. Wearable supercapacitors based on conductive cotton yarns. J Mater Sci 53, 14586–14597 (2018). https://doi.org/10.1007/s10853-018-2655-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2655-z

Keywords

Navigation