Skip to main content

Advertisement

Log in

Enhanced catalytic activity of Ni–Mo2C/La2O3–ZrO2 bifunctional catalyst for dry reforming of methane

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A series of Ni-modified Mo2C catalysts with La2O3-stabilized ZrO2 supports were synthesized via template method coupled with incipient wetness impregnation and temperature-programmed carbonization. The catalyst was tested in dry reforming of methane (DRM) reaction at the temperature range from 973 to 1173 K in a fixed-bed quartz reactor under atmospheric pressure. XRD, Raman, BET, H2-TPD, SEM, EDS and TEM were conducted to characterize the phase constitution, the pore structure, the morphology and the crystal structure of the catalysts. Ni–Mo2C nanoparticles of ~ 3 nm diameter were obtained for these catalysts, and the La2O3–ZrO2 supports exhibited a cubic lattice structure with a sheet shape, which is believed to contain an abundant of oxygen vacancies. And the synergistic interaction between the oxygen vacancy in La–Zr–O solid solution and the Ni–Mo2C particles could decrease the apparent activation energy of CO2. Both of them are beneficial for accelerating DRM reaction. CH4 conversion of the best specimen catalyst reaches 94% at 1173 K, and the catalyst maintains its stability after 100-h reaction. The superior catalytic activity of NMLZ-7.5 is attributed to the improved BET surface area (33.2 m2/g), smaller crystallites, grain boundaries and oxidation–carbonization cycle of Ni–Mo2C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sokolov S, Kondratenko EV, Pohl MM, Rodemerck U (2013) Effect of calcination conditions on time on-stream performance of Ni/La2O3–ZrO2 in low-temperature dry reforming of methane. Int J Hydrogen Energy 38:16121–16132

    Article  Google Scholar 

  2. Claridge JB, York APE, Brungs AJ, Marquez-Alvarez C, Sloan J, Tsang SC, Green MLH (1998) New catalysts for the conversion of methane to synthesis gas: molybdenum and tungsten carbide. J Catal 180:85–100

    Article  Google Scholar 

  3. Kumar N, Shojaee M, Spivey JJ (2015) Catalytic bi-reforming of methane: from greenhouse gases to syngas. Curr Opin Chem Eng 9:8–15

    Article  Google Scholar 

  4. Zhou X, Huang WY, Liu J, Wang HH, Li Z (2017) Quenched breathing effect, enhanced CO2 uptake and improved CO2/CH4 selectivity of MIL-53(Cr)/graphene oxide composites. Chem Eng Sci 167:98–104

    Article  Google Scholar 

  5. Abdollahifar M, Haghighi M, Sharifi M (2015) Dry reforming of methane over nanostructured Co/Y catalyst for hydrogen production: effect of ultrasound irradiation and Co-loading on catalyst properties and performance. Energy Convers Manag 103:1101–1112

    Article  Google Scholar 

  6. Al-Doghachi FAJ, Rashid U, Taufiq-Yap YH (2016) Investigation of Ce(III) promoter effects on the tri-metallic Pt, Pd, Ni/MgO catalyst in dry-reforming of methane. RSC Adv 6:10372–10384

    Article  Google Scholar 

  7. Stroud T, Smith TJ, Le Sache E, Santos JL, Centeno MA, Arellano-Garcia H, Odriozola JA, Reina TR (2018) Chemical CO2 recycling via dry and bi reforming of methane using Ni–Sn/Al2O3 and Ni–Sn/CeO2–Al2O3 catalysts. Appl Catal B Environ 224:125–135

    Article  Google Scholar 

  8. Wurzel T, Malcus S, Mleczko L (2000) Reaction engineering investigations of CO2 reforming in a fluidized-bed reactor. Chem Eng Sci 55:3955–3966

    Article  Google Scholar 

  9. Zhang ZL, Verykios XE, MacDonald SM, Affrossman S (1996) Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J Phys Chem 100:744–754

    Article  Google Scholar 

  10. Souza MMVM, Aranda DAG, Schmal M (2001) Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts. J Catal 204:498–511

    Article  Google Scholar 

  11. Munera JF, Irusta S, Cornaglia LM, Lombardo EA, Cesar DV, Schmal M (2007) Kinetics and reaction pathway of the CO2 reforming of methane on Rh supported on lanthanum-based solid. J Catal 245:25–34

    Article  Google Scholar 

  12. Tsipouriari VA, Verykios XE (2001) Kinetic study of the catalytic reforming of methane with carbon dioxide to synthesis gas over Ni/La2O3 catalyst. Catal Today 64:83–90

    Article  Google Scholar 

  13. Nguyen TH, Lamacz A, Krzton A, Ura A, Chalupka K, Nowosielska M, Rynkowski J, Djega-Mariadassou G (2015) Partial oxidation of methane over Ni-0/La2O3 bifunctional catalyst II: global kinetics of methane total oxidation, dry reforming and partial oxidation. Appl Catal B Environ 165:389–398

    Article  Google Scholar 

  14. Goula MA, Charisiou ND, Siakavelas G, Tzounis L, Tsiaoussis I, Panagiotopoulou P, Goula G, Yentekakis IV (2017) Syngas production via the biogas dry reforming reaction over Ni supported on zirconia modified with CeO2 or La2O3 catalysts. Int J Hydrogen Energy 42:13724–13740

    Article  Google Scholar 

  15. Lemonidou AA, Vagia EC, Lercher JA (2013) Acetic acid reforming over Rh supported on La2O3/CeO2–ZrO2: catalytic performance and reaction pathway analysis. ACS Catal 3:1919–1928

    Article  Google Scholar 

  16. Evans PA, Stevens R, Binner JGP (1984) Quantitative X-ray-diffraction analysis of polymorphic mixes of pure zirconia. Trans J Br Ceram Soc 83:39–43

    Google Scholar 

  17. Mccullough JD, Trueblood KN (1959) The crystal structure of baddeleyite (Monoclinic Zro2). Acta Crystallogr A 12:507–511

    Article  Google Scholar 

  18. Scott HG (1975) Phase relationships in zirconia–yttria system. J Mater Sci 10:1527–1535. https://doi.org/10.1007/BF01031853

    Article  Google Scholar 

  19. Nilufer IB, Gokce H, Muhaffel F, Ovecoglu ML, Cimenoglu H (2016) The effect of La2O3 on the microstructure and room temperature mechanical properties of t-ZrO2. Ceram Int 42:9443–9447

    Article  Google Scholar 

  20. Si J, Liu GL, Liu JG, Zhao L, Li SS, Guan Y, Liu Y (2016) Ni nanoparticles highly dispersed on ZrO2 and modified with La2O3 for CO methanation. RSC Adv 6:12699–12707

    Article  Google Scholar 

  21. Wang SC, Xie H, Lin YY, Poeppelmeier KR, Li T, Winans RE, Cui YR, Ribeiro FH, Canlas CP, Elam JW, Zhang HB, Marshall CL (2016) High thermal stability of La2O3- and CeO2-stabilized tetragonal ZrO2. Inorg Chem 55:2413–2420

    Article  Google Scholar 

  22. Zheng YN, Li KZ, Wang H, Wang YH, Tian D, Wei YG, Zhu X, Zeng CH, Luo YM (2016) Structure dependence and reaction mechanism of CO oxidation: a model study on macroporous CeO2 and CeO2–ZrO2 catalysts. J Catal 344:365–377

    Article  Google Scholar 

  23. Kilner JA, Drennan J, Dennis P, Steele BCH (1981) A study of anion transport in bismuth based oxide systems by electrical-conductivity and secondary ion mass-spectroscopy (Sims). Solid State Ionics 5:527–530

    Article  Google Scholar 

  24. Sokolov S, Kondratenko EV, Pohl MM, Barkschat A, Rodemerck U (2012) Stable low-temperature dry reforming of methane over mesoporous La2O3–ZrO2 supported Ni catalyst. Appl Catal B Environ 113:19–30

    Article  Google Scholar 

  25. Chen YZ, Liaw BJ, Kao CF, Kuo JC (2001) Yttria-stabilized zirconia supported platinum catalysts (Pt/YSZs) for CH4/CO2 reforming. Appl Catal a Gen 217:23–31

    Article  Google Scholar 

  26. Guell BM, da Silva IMT, Seshan K, Lefferts L (2009) Sustainable route to hydrogen—design of stable catalysts for the steam gasification of biomass related oxygenates. Appl Catal B Environ 88:59–65

    Article  Google Scholar 

  27. Rostrupnielsen JR, Hansen JHB (1993) Co2-reforming of methane over transition-metals. J Catal 144:38–49

    Article  Google Scholar 

  28. Bradford MCJ, Vannice MA (1996) Catalytic reforming of methane with carbon dioxide over nickel catalysts. 1. Catalyst characterization and activity. Appl Catal A Gen 142:73–96

    Article  Google Scholar 

  29. Zhang SH, Shi C, Chen BB, Zhang YL, Zhu YJ, Qiu JS, Au CT (2015) Catalytic role of beta-Mo2C in DRM catalysts that contain Ni and Mo. Catal Today 258:676–683

    Article  Google Scholar 

  30. Wu HD, Yin Y, Liu HZ, Liu TS, Zhao L (2014) Production of hydrogen from ethanol steam reforming over Ni–Mn/La2O3–ZrO2 Catalyst. Asian J Chem 26:383–388

    Google Scholar 

  31. Zhang ZL, Verykios XE, MacDonald SM, Affrossman S (1996) Comparative study of carbon dioxide reforming of methane to synthesis gas over Ni/La2O3 and conventional nickel-based catalysts. J Phys Chem 100:744–754

    Article  Google Scholar 

  32. Tsipas SA (2010) Effect of dopants on the phase stability of zirconia-based plasma sprayed thermal barrier coatings. J Eur Ceram Soc 30:61–72

    Article  Google Scholar 

  33. Li WZ, Zhao ZK, Ren PP, Wang GR (2015) Effect of molybdenum carbide concentration on the Ni/ZrO2 catalysts for steam-CO2 bi-reforming of methane. Rsc Adv 5:100865–100872

    Article  Google Scholar 

  34. Kislov VR, Skudin VV, Adamu A (2017) New bimetallic Mo2C-WC/Al2O3 membrane catalysts in the dry reforming of methane. Kinet Catal 58:73–80

    Article  Google Scholar 

  35. Shi C, Zhang A, Li X, Zhang S, Zhu A, Ma Y, Au C (2012) Ni-modified Mo2C catalysts for methane dry reforming. Appl Catal A Gen 431:164–170

    Article  Google Scholar 

  36. Yao L, Wang Y, Galvez ME, Hu C, Da Costa P (2018) Ni–Mo2C supported on alumina as a substitute for Ni–Mo reduced catalysts supported on alumina material for dry reforming of methane. C R Chim 21:247–252

    Article  Google Scholar 

  37. Zou H, Chen S, Huang J, Zhao Z (2017) Effect of impregnation sequence on the catalytic performance of NiMo carbides for the tri-reforming of methane. Int J Hydrogen Energy 42:20401–20409

    Article  Google Scholar 

  38. Darujati ARS, Thomson WJ (2005) Stability of supported and promoted-molybdenum carbide catalysts in dry-methane reforming. Appl Catal A Gen 296:139–147

    Article  Google Scholar 

  39. Gao H, Yao Z, Shi Y, Jia R, Liang F, Sun Y, Mao W, Wang H (2018) Simple and large-scale synthesis of beta-phase molybdenum carbides as highly stable catalysts for dry reforming of methane. Inorg Chem Front 5:90–99

    Article  Google Scholar 

  40. Gao H, Yao Z, Shi Y, Wang S (2018) Improvement of the catalytic stability of molybdenum carbide via encapsulation within carbon nanotubes in dry methane reforming. Catal Sci Technol 8:697–701

    Article  Google Scholar 

  41. Liang P, Gao H, Yao Z, Jia R, Shi Y, Sun Y, Fan Q, Wang H (2017) Simple synthesis of ultrasmall beta-Mo2C and alpha-MoC1−x nanoparticles and new insights into their catalytic mechanisms for dry reforming of methane. Catal Sci Technol 7:3312–3324

    Article  Google Scholar 

  42. Guo J, Zhang AJ, Zhu AM, Xu Y, Au CT, Shi C (2010) A carbide catalyst effective for the dry reforming of methane at atmospheric pressure. ACS Symposium 1056:181–196

  43. Shi C, Zhang AJ, Li XS, Zhang SH, Zhu AM, Ma YF, Au CT (2012) Ni-modified Mo2C catalysts for methane dry reforming. Appl Catal A Gen 431:164–170

    Article  Google Scholar 

  44. Zhang AJ, Zhu AM, Chen BB, Zhang SH, Au CT, Shi CA (2011) In-situ synthesis of nickel modified molybdenum carbide catalyst for dry reforming of methane. Catal Commun 12:803–807

    Article  Google Scholar 

  45. LaMont DC, Thomson WJ (2005) Dry reforming kinetics over a bulk molybdenum carbide catalyst. Chem Eng Sci 60:3553–3559

    Article  Google Scholar 

  46. Li WZ, Zhao ZK, Ren PP, Wang GR (2015) Effect of molybdenum carbide concentration on the Ni/ZrO2 catalysts for steam-CO2 bi-reforming of methane. RSC Adv 5:100865–100872

    Article  Google Scholar 

  47. He Z, Yang M, Wang XQ, Zhao Z, Duan AJ (2012) Effect of the transition metal oxide supports on hydrogen production from bio-ethanol reforming. Catal Today 194:2–8

    Article  Google Scholar 

  48. Yuan K, Feng C, Gan X, Yu Z, Wang X, Zhu L et al (2016) Fabrication of La2Zr2O7, ceramic fibers via electrospinning method using different La2O3 precursors. Ceram Int 42:16633–16639

    Article  Google Scholar 

  49. Orera A, Larraz G, Sanjuán ML (2013) Spectroscopic study of the competition between dehydration and carbonation effects in La2O3-based materials. J Eur Ceram Soc 33:2103–2110

    Article  Google Scholar 

  50. Junior ES, Antonio SG, Longo E (2017) Synthesis and structural evolution of partially and fully stabilized ZrO2 from a versatile method aided by microwave power. Ceram Int 44:3517–3522

    Article  Google Scholar 

  51. Tao W, Cheng GW, Yao WL, Lu XG, Zhu QH, Li GS, Zhou ZF (2014) Syngas production by CO2 reforming of coke oven gas over Ni/La2O3–ZrO2 catalysts. Int J Hydrogen Energy 39:18650–18658

    Article  Google Scholar 

  52. Ma YF, Guan GQ, Phanthong P, Hao XG, Huang W, Tsutsumi A, Kusakabe K, Abudula A (2014) Catalytic activity and stability of nickel-modified molybdenum carbide catalysts for steam reforming of methanol. J Phys Chem C 118:9485–9496

    Article  Google Scholar 

  53. Tang C, Wang HF, Chen X, Li BQ, Hou TZ, Zhang BS, Zhang Q, Titirici MM, Wei F (2016) Oxygen electrocatalysis: topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28:6845

    Article  Google Scholar 

  54. Amsif M, Magraso A, Marrero-Lopez D, Ruiz-Morales JC, Canales-Vazquez J, Nunez P (2012) Mo-substituted lanthanum tungstate La28−yW4+yO54+delta: a competitive mixed electron–proton conductor for gas separation membrane applications. Chem Mater 24:3868–3877

    Article  Google Scholar 

  55. Antonio RP, Philomena S, Sergio T, Gianfranco P (2017) Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. RSC Adv 55:6493–6513

    Google Scholar 

  56. He H, Dai H, Au CT (2004) Defective structure, oxygen mobility, oxygen storage capacity, and redox properties of RE-based (RE = Ce, Pr) solid solutions. Catal Today 90:245–254

    Article  Google Scholar 

  57. Chen DK, He DD, Lu JC, Zhong LP, Liu F, Liu JP, Yu J, Wan GP, He SF, Luo YM (2017) Investigation of the role of surface lattice oxygen and bulk lattice oxygen migration of cerium-based oxygen carriers: XPS and designed H-2-TPR characterization. Appl Catal B Environ 218:249–259

    Article  Google Scholar 

  58. Sun FM, Yan CF, Wang ZD, Guo CQ, Huang SL (2015) Ni/Ce–Zr–O catalyst for high CO2 conversion during reverse water gas shift reaction (RWGS). Int J Hydrogen Energy 40:15985–15993

    Article  Google Scholar 

  59. Nguyen TH, Lamacz A, Krzton A, Liszka B, Djega-Mariadassou G (2016) Partial oxidation of methane over Ni-0/La2O3 bifunctional catalyst III. Steady state activity of methane total oxidation, dry reforming, steam reforming and partial oxidation. Sequences of elementary steps. Appl Catal B Environ 182:385–391

    Article  Google Scholar 

  60. Yan ZX, Wang HE, Zhang MP, Jiang ZF, Jiang TS, Xie JM (2013) Pt supported on Mo2C particles with synergistic effect and strong interaction force for methanol electro-oxidation. Electrochim Acta 95:218–224

    Article  Google Scholar 

  61. Nikoo MK, Amin NAS (2011) Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Process Technol 92:678–691

    Article  Google Scholar 

  62. Zhao ZK, Ren PP, Li WZ, Miao BY (2017) Effect of mineralizers for preparing ZrO2 support on the supported Ni catalyst for steam-CO2 bi-reforming of methane. Int J Hydrogen Energy 42:6598–6609

    Article  Google Scholar 

  63. Li WZ, Zhao ZK, Jiao YH (2016) Dry reforming of methane towards CO-rich hydrogen production over robust supported Ni catalyst on hierarchically structured monoclinic zirconia nanosheets. Int J Hydrogen Energy 41:17907–17921

    Article  Google Scholar 

  64. Duan YP, Shang RS, Zhong XY, Xie W, Wang XY, Huang LH (2016) In-situ synthesis of Ni–Mo2C/Al2O3 catalysts for dry reforming of methane. Int J Hydrogen Energy 41:21955–21964

    Article  Google Scholar 

  65. Nguyen TH, Lamacz A, Krzton A, Ura A, Chalupka K, Nowosielska M, Rynkowski J, Djega-Mariadassou G (2015) Partial oxidation of methane over Ni-0/La2O3 bifunctional catalyst II: global kinetics of methane total oxidation, dry reforming and partial oxidation. Appl Catal B Environ 165:389–398

    Article  Google Scholar 

  66. Lemonidou AA, Vasalos IA (2002) Carbon dioxide reforming of methane over 5 wt% Ni/CaO–Al2O3 catalyst. Appl Catal A Gen 228:227–235

    Article  Google Scholar 

  67. Bradford MCJ, Vannice MA (1999) The role of metal-support interactions in CO2 reforming of CH4. Catal Today 50:87–96

    Article  Google Scholar 

  68. Bradford MCJ, Vannice MA (1997) Metal-support interactions during the CO2 reforming of CH4 over model TiOx/Pt catalysts. Catal Lett 48:31–38

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Natural Science Foundation of Guangdong Province (Project No. 2015A030312007), National Natural Science Foundation of China (Project No. 51576201), Key Lab of Renewable Energy Foundation of Chinese Academy of Sciences (Project Nos. Y707j81001, Y609JK1001) and Innovation R&D Team of Dongguan City (2014607117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changfeng Yan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 93 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Q., Wang, Z., Jayasundera, B. et al. Enhanced catalytic activity of Ni–Mo2C/La2O3–ZrO2 bifunctional catalyst for dry reforming of methane. J Mater Sci 53, 14559–14572 (2018). https://doi.org/10.1007/s10853-018-2642-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2642-4

Keywords

Navigation