Skip to main content
Log in

Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, Bi12O17Cl2 nanosheets preferentially oriented growth along [200] were successfully synthesized through a facile hydrothermal method in the presence of various surfactants, including PVP, CTAB and CTAC. The crystallization behavior, band gap structure and morphology of Bi12O17Cl2 could be modulated by the addition of surfactants. Bi12O17Cl2 with surfactants displays superior visible light photocatalytic performance than pristine sample for photodegrading RhB and 2-chlorophenol. Moreover, Bi12O17Cl2 preferentially oriented growth along [200] maintained stable and recyclable in the photocatalytic process, demonstrating their promising application in environment remediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Scheme 1
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244

    Article  Google Scholar 

  2. Zhang Y, Park S-J (2017) Au–Pd bimetallic alloy nanoparticle-decorated BiPO4 nanorods for enhanced photocatalytic oxidation of trichloroethylene. J Catal 355:1–10

    Article  Google Scholar 

  3. CambiéD Bottecchia C, Straathof NJW, Hessel V, Noël T (2016) Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment. Chem Rev 116:10276–10341

    Article  Google Scholar 

  4. Briand GG, Burford N (1999) Bismuth compounds and preparations with biological or medicinal relevance. Chem Rev 99:2601–2658

    Article  Google Scholar 

  5. Mao X, Fan C, Wang Y, Wang Y, Zhang X (2014) RhB-sensitized effect on the enhancement of photocatalytic activity of BiOCl toward bisphenol-A under visible light irradiation. Appl Surf Sci 317:517–525

    Article  Google Scholar 

  6. Cheng G, Xiong J, Stadler FJ (2013) Facile template-free and fast refluxing synthesis of 3D desertrose-like BiOCl nanoarchitectures with superior photocatalytic activity. New J Chem 37:3207–3213

    Article  Google Scholar 

  7. Pare B, Sarwan B, Jonnalagadda SB (2012) The characteristics and photocatalytic activities of BiOCl as highly efficient photocatalyst. J Mol Struct 1007:196–202

    Article  Google Scholar 

  8. Zhao Q, Liu X, Xing Y, Liu Z, Du C (2017) Synthesizing Bi2O3/BiOCl heterojunctions by partial conversion of BiOCl. J Mater Sci 52:2117–2130. https://doi.org/10.1007/s10853-016-0499-y

    Article  Google Scholar 

  9. Peng H, Chan CK, Meister S, Zhang XF, Cui Y (2009) Shape evolution of layer-structured bismuth oxychloride nanostructures via low-temperature chemical vapor transport. Chem Mater 21:247–252

    Article  Google Scholar 

  10. Jiang J, Zhao K, Xiao X, Zhang L (2012) Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 134:4473–4476

    Article  Google Scholar 

  11. Gnayem H, Sasson Y (2013) Hierarchical nanostructured 3D flowerlike BiOClxBr1 − x semiconductors with exceptional visible light photocatalytic activity. ACS Catal 3:186–191

    Article  Google Scholar 

  12. Jiang J, Zhang L, Li H, He W, Yin JJ (2013) Self-doping and surface plasmon modification induced visible light photocatalysis of BiOCl. Nanoscale 5:10573–10581

    Article  Google Scholar 

  13. Sun M, Zhao Q, Du C, Liu Z (2015) Enhanced visible light photocatalytic activity in BiOCl/SnO2: heterojunction of two wide band-gap semiconductors. RSC Adv 5:22740–22752

    Article  Google Scholar 

  14. Xu Y, Xu S, Wang S, Zhang Y, Li G (2014) Citric acid modulated electrochemical synthesis and photocatalytic behavior of BiOCl nanoplates with exposed 001 facets. Dalton Trans 43:479–485

    Article  Google Scholar 

  15. Ye L, Zan L, Tian L, Peng T, The Zhang J (2011) 001 facets-dependent high photoactivity of BiOCl nanosheets. Chem Commun 47:6951–6953

    Article  Google Scholar 

  16. Liu G, Yu JC, Lu GQ, Cheng HM (2011) Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties. Chem Commun 47:6763

    Article  Google Scholar 

  17. Liu S, Yu J, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132:11914–11916

    Article  Google Scholar 

  18. Hu X, Xu Y, Zhu H, Hua F, Zhu S (2016) Controllable hydrothermal synthesis of BiOCl nanoplates with high exposed 001 facets. Mater Sci Semicond Process 41:12–16

    Article  Google Scholar 

  19. Li J, Zhang L, Li Y, Yu Y (2014) Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high 001 facet exposure. Nanoscale 6:167–171

    Article  Google Scholar 

  20. Wang CY, Zhang X, Qiu HB, Wang WK, Huang GX, Jiang J, Yu HQ (2017) Photocatalytic degradation of bisphenol A by oxygen-rich and highly visible-light responsive Bi12O17Cl2 nanobelts. Appl Catal B Environ 200:659–665

    Article  Google Scholar 

  21. Wang CY, Zhang X, Song XN, Wang WK, Yu HQ (2016) Novel Bi12O15Cl6 photocatalyst for the degradation of bisphenol A under visible-light irradiation. ACS Appl Mater Interfaces 8:5320–5326

    Article  Google Scholar 

  22. Jin X, Ye L, Wang H, Su Y, Xie H, Zhong Z, Zhang H (2015) Bismuth-rich strategy induced photocatalytic molecular oxygen activation properties of bismuth oxyhalogen: the case of Bi24O31Cl10. Appl Catal B Environ 165:668–675

    Article  Google Scholar 

  23. Bi C, Cao J, Lina H, Wang Y, Chen S (2016) Enhanced photocatalytic activity of Bi12O17Cl2 through loading Pt quantum dots as a highly efficient electron capturer. Appl Catal B Environ 195:132–140

    Article  Google Scholar 

  24. Myung Y, Wu F, Banerjee S, Stoica A, Zhong H, Lee SS, Fortner J, Yang L, Banerjee P (2015) Highly conducting, n-type Bi12O15Cl6 nanosheets with superlattice-like structure. Chem Mater 27:7710–7718

    Article  Google Scholar 

  25. Liu X, Su Y, Zhao Q, Du C, Liu Z (2016) Constructing Bi24O31Cl10/BiOCl heterojunction via a simple thermal annealing route for achieving enhanced photocatalytic activity and selectivity. Sci Rep 6:28689

    Article  Google Scholar 

  26. Hao L, Huang H, Guo Y, Du X, Zhang Y (2017) Bismuth oxychloride homogeneous phase junction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight. Appl Surf Sci 420:303–312

    Article  Google Scholar 

  27. Lin X, Huang T, Huang F, Wang W, Shi J (2006) Photocatalytic activity of a Bi-based oxychloride Bi3O4Cl. J Phys Chem B 110:24629–24634

    Article  Google Scholar 

  28. Wang DH, Gao GQ, Zhang YW, Zhou LS, Xu AW, Chen W (2012) Nanosheet-constructed porous BiOCl with dominant 001 facets for superior photosensitized degradation. Nanoscale 4:7780–7785

    Article  Google Scholar 

  29. Yang XH, Li Z, Liu G, Xing J, Sun C, Yang HG, Li C (2011) Ultra-thin anatase TiO2 nanosheets dominated with 001 facets: thickness-controlled synthesis, growth mechanism and water-splitting properties. CrystEngComm 13:1378–1383

    Article  Google Scholar 

  30. Chang F, Luo J, Wang X, Xie Y, Deng B, Hu X (2015) Poly (vinyl pyrrolidone)-assisted hydrothermal synthesis and enhanced visible-light photocatalytic performance of oxygen-rich bismuth oxychlorides. J Colloid Interface Sci 459:136–145

    Article  Google Scholar 

  31. Li Y, Wang Q, Liu B, Zhang J (2015) The 001 facets-dependent superior photocatalytic activities of BiOCl nanosheets under visible light irradiation. Appl Surf Sci 349:957–969

    Article  Google Scholar 

  32. Deng H, Wang J, Peng Q, Wang X, Li Y (2005) Controlled hydrothermal synthesis of bismth oxyhalide nanobelts and nanotubes. Chem Eur J 11:6519–6524

    Article  Google Scholar 

  33. Li Y, Cai X, Shen W (2014) Preparation and performance comparison of supercapacitors based on nanocomposites of MnO2 with cationic surfactant of CTAC or CTAB by direct electrodeposition. Electrochim Acta 149:306–315

    Article  Google Scholar 

  34. Han Q, Zhang K, Zhang J, Gong S, Wang X, Zhu J (2016) Effect of the counter ions on composition and morphology of bismuth oxyhalides and their photocatalytic performance. Chem Eng J 299:217–226

    Article  Google Scholar 

  35. Tian ZR, Liu J, Voigt JA, Xu H, Mcdermott MJ (2003) Dendritic growth of cubically ordered nanoporous materials through self-assembly. Nano Lett 3:89–92

    Article  Google Scholar 

  36. Ulmius J, Lindman B, Lindblom G, Drakenberg T (1978) 1H, 13C, 35Cl and 81Br NMR of aqueous hexadecyltrimethylammonium salt solutions: solubilization, viscoelasticity, and counterion specificity. J Colloid Interface Sci 65:88–97

    Article  Google Scholar 

  37. Zhang F, Zhu J, An HQ, Li JJ, Zhao JW (2016) A two-step approach to realize size- and shape-selective separation of crude gold nanotriangles with high purification. J Mater Chem 4:568–580

    Article  Google Scholar 

  38. Qian Y, Lu G, Sun Y, Song X, Yu J (2014) Preparation of strontium chloride hexahydrate by batch-cooling crystallization: control of crystal size and morphology. Cryst Res Technol 11:878–887

    Article  Google Scholar 

  39. Li Q, Zhao X, Yang J, Jia CJ, Jin Z, Fan W (2015) Exploring the effects of nanocrystal facet orientations in g-C3N4/BiOCl heterostructures on photocatalytic performance. Nanoscale 7:18971–18983

    Article  Google Scholar 

  40. Huang S, Lang J, Du C, Bian F, Su Y, Wang X (2017) Enhanced driving force and charge separation efficiency in disordered SnNbxOy: boosting photocatalytic activity toward water reduction. Chem Eng J 309:313–320

    Article  Google Scholar 

  41. Ji K, Dai H, Deng J, Zang H, Arandiyan H, Xie S, Yang H (2015) 3DOM BiVO4 supported silver bromide and noble metals: high-performance photocatalysts for the visible-light-driven degradation of 4-chlorophenol. Appl Catal B Environ 168:274–282

    Article  Google Scholar 

  42. Wang XJ, Wang Q, Li FT, Yang WY, Zhao Y, Hao YY, Liu SJ (2013) Novel BiOCl–C3N4 heterojunction photocatalysts: in situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem Eng J 234:361–371

    Article  Google Scholar 

  43. Su Y, Huang S, Wang T, Peng L, Wang X (2015) Defect-meditated efficient catalytic activity toward p-nitrophenol reduction: a case study of nitrogen doped calcium niobate system. J Hazard Mater 295:119–126

    Article  Google Scholar 

  44. Veréb G, Gyulavári T, PaP Z, Baia L, Mogyorósi K, Dombi A, Hernádi K (2015) Visible light driven photocatalytic elimination of organic- and microbial pollution by rutile-phase titanium dioxides: new insights on the dynamic relationship between morpho-structural. RSC Adv 5:66636–66643

    Article  Google Scholar 

  45. Li H, Shang J, Zhu H, Yang Z, Ai Z, Zhang L (2016) Oxygen vacancy structure associated photocatalytic water oxidation of BiOCl. ACS Catal 6:8276–8285

    Article  Google Scholar 

  46. Wu X, Ng YH, Wang L, Du Y, Dou SX, Amal R, Scott J (2017) Improving the photo-oxidative capability of BiOBr via crystal facet engineering. J Mater Chem A 5:8117–8124

    Article  Google Scholar 

  47. Wang Y, Huang X, Wang K, Zhang L, Wang B, Fang Z, Zhao Y, Gao F, Feng W (2018) Ag-defied ultrathin Bi12O17Cl2 nanosheets: photo-assisted Ag exfoliation synthesis and enhanced photocatalytic performance. J Mater Chem A 6:9200–9208

    Article  Google Scholar 

  48. Weng S, Fang Z, Wang Z, Zheng Z, Feng W, Liu P (2014) Construction of teeth-like homojunction BiOCl (001) nanosheets by selective etching and its high photocatalytic activity. ACS Appl Mater Interfaces 6:18423–18428

    Article  Google Scholar 

  49. Tien LC, Lin YL, Chen SY (2013) Synthesis and characterization of Bi12O17Cl2 naowires obtained by chlorination of α-Bi2O3 nanowires. Mater Lett 113:30–33

    Article  Google Scholar 

  50. Zheng J, Chang F, Jiao M, Xu Q, Deng B, Hu X (2018) A visible-light-driven heterojuncted composite WO3/Bi12O17Cl2: synthesis, characterization, and improved photocatalytic performance. J Colloid Interface Sci 510:20–31

    Article  Google Scholar 

  51. Shi X, Chen X, Chen X, Zhou S, Lou S, Wang Y, Yuan L (2013) PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity. Chem Eng J 222:120–127

    Article  Google Scholar 

  52. Zhang L, Wang W, Zhou L, Xu H (2007) Bi2WO6 nano- and micro-structures: shape control and associated visible-light driven photocatalytic activities. Small 3:1618–1625

    Article  Google Scholar 

  53. Chang X, Yu G, Huang J, Li Z, Zhu S, Yu P, Cheng C, Deng S, Ji G (2010) Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy. Catal Today 153:193–199

    Article  Google Scholar 

  54. Watanabe T, Takizawa T, Honda K (1977) Photocatalysis through excitation of adsorbates. 1. Highly efficient N-deethylation of rhodamine B adsorbed to cadmium sulfide. J Phys Chem 81:1845–1851

    Article  Google Scholar 

  55. Haider Z, Zheng JH, Kang YS (2016) Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of 001 facet exposed unique octagonal BiOCl nanosheets. Phys Chem Chem Phys 18:19595–19604

    Article  Google Scholar 

  56. Xiong J, Cheng G, Qin F, Wang R, Sun H, Chen T (2013) Tunable BiOCl hierarchical nanostructures for high-efficient photocatalysis under visible light irradiation. Chem Eng J 220:228–236

    Article  Google Scholar 

  57. Xiong J, Jiao Z, Lu G, Ren W, Ye J, Bi Y (2013) Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties. Chem Eur J 19:9472–9475

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC, 51462025) and Opening Project of Hunan Key Laboratory of Mineral Materials and Application (MMA 201702).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunfang Du.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1542 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xing, Y., Liu, Z. et al. Enhanced photocatalytic activity of Bi12O17Cl2 preferentially oriented growth along [200] with various surfactants. J Mater Sci 53, 14217–14230 (2018). https://doi.org/10.1007/s10853-018-2637-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2637-1

Keywords

Navigation