Skip to main content

Effective poly(ethylene glycol) methyl ether grafting technique onto Nylon 6 surface to achieve resistance against pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa


Our study is focused on an efficient reduction of amide functional groups to secondary amine on Nylon 6 surface with borane–tetrahydrofuran (BH3–THF) complex, followed by N-alkylation with benzyl chloride (C6H5CH2Cl) which has been successfully used as a model system for further grafting of the reduced Nylon 6 surface by poly(ethylene glycol) methyl ether tosylate (Me-PEG-OTs). The amine-activated surface has been obtained by treatment of reduced Nylon 6 with n-butyllithium or tert-butyllithium in THF. Modified Nylon 6 has been found to be antibacterial particularly due to the presence of hydrophilic poly(ethylene glycol) methyl ether (H3C-PEG) chains. The surface modifications were successfully characterized by various techniques. Water contact angle and free surface energy analyses indicated a significant change in the surface morphology. It was further supported by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and Raman spectroscopy. Finally, antibacterial tests were performed against two pathogenic bacterial strains Pseudomonas aeruginosa (CCM 3955) and Staphylococcus aureus (CCM 3953).

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Scheme 1


  1. 1

    Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718

    Article  Google Scholar 

  2. 2

    Higgins DM, Basaraba RJ, Hohnbaum AC, Lee EJ, Grainger DW, Gonzalez-Juarrero M (2009) Localized immunosuppressive environment in the foreign body response to implanted biomaterials. Am J Pathol 175:161–170

    Article  Google Scholar 

  3. 3

    Sileika TS, Kim HD, Maniak P, Messersmith PB (2011) Antibacterial performance of polydopamine-modified polymer surfaces containing passive and active components. ACS Appl Mater Interfaces 3:4602–4610

    Article  Google Scholar 

  4. 4

    Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    Article  Google Scholar 

  5. 5

    Hucknall A, Rangarajan S, Chilkoti A (2009) In pursuit of zero: polymer brushes that resist the adsorption of proteins. Adv Mater 21:2441–2446

    Article  Google Scholar 

  6. 6

    Amiji M, Park K (1993) Surface modification of polymeric biomaterials with poly(ethylene oxide), albumin, and heparin for reduced thrombogenicity. J Biomater Sci Polym Ed 4:217–234

    Article  Google Scholar 

  7. 7

    Gallo J, Holinka M, Moucha CS (2014) Antibacterial surface treatment for orthopaedic implants. Int J Mol Sci 15:13849–13880

    Article  Google Scholar 

  8. 8

    Page K, Wilson M, Parkin IP (2009) Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J Mater Chem 19:3819–3831

    Article  Google Scholar 

  9. 9

    Ohko Y, Utsumi Y, Niwa C, Tatsuma T, Kobayakawa K, Satoh Y, Kubota Y, Fujishima A (2001) Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J Biomed Mater Res 58:97–101

    Article  Google Scholar 

  10. 10

    Perelshtein I, Applerot G, Perkas N, Wehrschuetz-Sigl E, Hasmann A, Guebitz G, Gedanken A (2009) CuO–cotton nanocomposite: formation, morphology, and antibacterial activity. Surf Coat Technol 204:54–57

    Article  Google Scholar 

  11. 11

    Perelshtein I, Lipovsky A, Perkas N, Tzanov T, Gedanken A (2016) Sonochemical co-deposition of antibacterial nanoparticles and dyes on textiles. Beilstein J Nanotechnol 7:1–8

    Article  Google Scholar 

  12. 12

    Chuang HF, Smith RC, Hammond PT (2008) Polyelectrolyte multilayers for tunable release of antibiotics. Biomacromolecules 9:1660–1668

    Article  Google Scholar 

  13. 13

    Kim YD, Dordick JS, Clark DS (2001) Siloxane-based biocatalytic films and paints for use as reactive coatings. Biotechnol Bioeng 72:475–482

    Article  Google Scholar 

  14. 14

    Dai J, Bruening ML (2002) Catalytic nanoparticles formed by reduction of metal ions in multilayered polyelectrolyte films. Nano Lett 2:497–501

    Article  Google Scholar 

  15. 15

    Bearinger JP, Terrettaz S, Michel R, Tirelli N, Vogel H, Textor M, Hubbell JA (2003) Chemisorbed poly(propylene sulphide)-based copolymers resist biomolecular interactions. Nat Mater 2:259–264

    Article  Google Scholar 

  16. 16

    Ostuni E, Chapman RG, Holmlin RE, Takayama S, Whitesides GM (2001) A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620

    Article  Google Scholar 

  17. 17

    Liu VA, Jastromb WE, Bhatia SN (2002) Engineering protein and cell adhesivity using PEO-terminated triblock polymers. J Biomed Mater Res 60:126–134

    Article  Google Scholar 

  18. 18

    Roosjen A, Van Der Mei HC, Busscher HJ, Norde W (2004) Microbial adhesion to poly(ethylene oxide) brushes: influence of polymer chain length and temperature. Langmuir 20:10949–10955

    Article  Google Scholar 

  19. 19

    Park KD, Kim YS, Han DK, Kim YH, Lee EHB, Suh H, Choi KS (1998) Bacterial adhesion on PEG modified polyurethan surfaces. Biomaterials 19:851–859

    Article  Google Scholar 

  20. 20

    Prime K, Whitesides G (1991) Self-assembled organic monolayers: model systems for studying adsorption of proteins at surfaces. Science 252:1164–1167

    Article  Google Scholar 

  21. 21

    Gour N, Ngo KX, Vebert-Nardin C (2014) Anti-infectious surfaces achieved by polymer modification. Macromol Mater Eng 299:648–668

    Article  Google Scholar 

  22. 22

    Kingshott P, Thissen H, Griesser HJ (2002) Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials 23:2043–2056

    Article  Google Scholar 

  23. 23

    Dong B, Manolache S, Wong ACL, Denes FS (2011) Antifouling ability of polyethylene glycol of different molecular weights grafted onto polyester surfaces by cold plasma. Polym Bull 66:517–528

    Article  Google Scholar 

  24. 24

    De Los Santos Pereira A, Sheikh S, Blaszykowski C, Pop-Georgievski O, Fedorov K, Thompson M, Rodriguez-Emmenegger C (2016) Antifouling polymer brushes displaying antithrombogenic surface properties. Biomacromolecules 17:1179–1185

    Article  Google Scholar 

  25. 25

    Jia X, Herrera-Alonso M, McCarthy TJ (2006) Nylon surface modification. Part 1. Targeting the amide groups for selective introduction of reactive functionalities. Polymer (Guildf) 47:4916–4924

    Article  Google Scholar 

  26. 26

    Maitz MF (2015) Applications of synthetic polymers in clinical medicine. Biosurf Biotribol 1:161–176

    Article  Google Scholar 

  27. 27

    Chu CC, Tsai WC, Yao JY, Chiu SS (1987) Newly made antibacterial braided Nylon sutures. I. In vitro qualitative and in vivo preliminary biocompatibility study. J Biomed Mater Res 21:1281–1300

    Article  Google Scholar 

  28. 28

    McCarthy BJ (2011) Textiles for hygiene and infection control. Woodhead Publishing, New Delhi

    Book  Google Scholar 

  29. 29

    Wang H, Li Y, Zuo Y, Li J, Ma S, Cheng L (2007) Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28:3338–3348

    Article  Google Scholar 

  30. 30

    Abedini F, Ahmadi A, Yavari A, Hosseini V, Mousavi S (2013) Comparison of silver Nylon wound dressing and silver sulfadiazine in partial burn wound therapy. Int Wound J 10:573–578

    Article  Google Scholar 

  31. 31

    Roy RB, Wilkinson RH, Bayliss CE (1967) The utilization of long nylon catheters for prolonged intravenous infusions. Canad Med Ass J 96:94–97

    Google Scholar 

  32. 32

    Klinkmann H, Vienken J (1995) Membranes for dialysis. Nephrol Dial Transplant 10:39–45

    Article  Google Scholar 

  33. 33

    Mao C, Zhao W, Zhu C, Zhu A, Shen J, Lin S (2005) In vitro studies of platelet adhesion on UV radiation-treated Nylon surface. Carbohydr Polym 59:19–25

    Article  Google Scholar 

  34. 34

    Beeskow T, Kroner KH, Anspach FB (1997) Nylon-based affinity membranes: impacts of surface modification on protein adsorption. J Colloid Interface Sci 196:278–291

    Article  Google Scholar 

  35. 35

    Ulbricht M (1996) Photograft-polymer-modified microporous membranes with environment-sensitive permeabilities. React Funct Polym 31:165–177

    Article  Google Scholar 

  36. 36

    Foerch R, Hunter DH (1992) Remote nitrogen plasma treatment of polymers: polyethylene, Nylon 6,6, poly(ethylene vinyl alcohol), and poly(ethylene terephthalate). J Polym Sci Part A Polym Chem 30:279–286

    Article  Google Scholar 

  37. 37

    Weikart C, Miyama M, Yasuda H (1999) Surface modification of conventional polymers by depositing plasma polymers of trimethylsilane and of trimethylsilane + O2. J Colloid Interface Sci 211:28–38

    Article  Google Scholar 

  38. 38

    Inman BDJ, Hornby WE (1972) The immobilization of enzymes on nylon structures and their use in automated analysis. Biochem J 129:255–262

    Article  Google Scholar 

  39. 39

    Morris DL, Campbell J, Hornby WE (1975) A chemistry for the immobilization of enzymes on nylon. Biochem J 147:593–603

    Article  Google Scholar 

  40. 40

    Onyezili FN (1989) Nylon tube O-alkylation for lmmobilisation of covalent enzymes. Analyst 114:789–791

    Article  Google Scholar 

  41. 41

    Cairns TL, Foster HD, Larchar AW, Schneider AK, Schreiber RS (1949) Preparation and properties of N-methylol, N-alkoxymethyl and N-alkylthiomethyl polyamides. J Am Chem Soc 71:651–655

    Article  Google Scholar 

  42. 42

    Perry E, Savory J (1967) Modification of Nylon 66 with diisocyanates and diacid chlorides. II. Physical properties. J Appl Polym Sci 11:2485–2497

    Article  Google Scholar 

  43. 43

    Dong B, Jiang H, Manolache S, Wong ACL, Denes FS (2007) Plasma-mediated grafting of poly(ethylene glycol) on polyamide and polyester surfaces and evaluation of antifouling ability of modified substrates. Langmuir 23:7306–7313

    Article  Google Scholar 

  44. 44

    Dennes TJ, Hunt GC, Schwarzbauer JE, Schwartz J (2007) High-yield activation of scaffold polymer surfaces to attach cell adhesion molecules. J Am Chem Soc 129:93–97

    Article  Google Scholar 

  45. 45

    Shen J, Li Y, Zuo Y, Zou Q, Zhang L, Liu H (2011) Surface modification of polyamide 6 immobilized with collagen: characterization and cytocompatibility. Int J Polym Mater 60:907–921

    Article  Google Scholar 

  46. 46

    Herrera-Alonso M, McCarthy TJ, Jia X (2006) Nylon surface modification: 2. Nylon-supported composite films. Langmuir 22:1646–1651

    Article  Google Scholar 

  47. 47

    Ha CS, Choi HY, Cho WJ (1991) Synthesis of nylon 6-g-poly(ethylene glycol) copolymer and its compatibilizing effect in nylon 6/poly(ethylene glycol) blends. Polym Bull 192:185–192

    Article  Google Scholar 

  48. 48

    Tong M, Yuan S, Long H, Zheng M, Wang L, Chen J (2011) Reduction of nitrobenzene in groundwater by iron nanoparticles immobilized in PEG/nylon membrane. J Contam Hydrol 122:16–25

    Article  Google Scholar 

  49. 49

    Luo J, Pardin C, Lubell WD, Zhu XX (2007) Poly(vinyl alcohol)-graft-poly(ethylene glycol) resins and their use in solid-phase synthesis and supported TEMPO catalysis. Chem Commun 0:2136–2138

    Article  Google Scholar 

  50. 50

    Jayalakshmi A, Kim IC, Kwon YN (2015) Cellulose acetate graft-(glycidylmethacrylate-g-PEG) for modification of AMC ultrafiltration membranes to mitigate organic fouling. RSC Adv 5:48290–48300

    Article  Google Scholar 

  51. 51

    Goddard JM, Hotchkiss JH (2007) Polymer surface modification for the attachment of bioactive compounds. Prog Polym Sci 32:698–725

    Article  Google Scholar 

  52. 52

    Schuster JM, Schvezov CE, Rosenberger MR (2015) Analysis of the results of surface free energy measurement of Ti6Al4V by different methods. Proc Mater Sci 8:732–741

    Article  Google Scholar 

  53. 53

    Romero-Vargas Castrillón S, Lu X, Shaffer DL, Elimelech M (2014) Amine enrichment and poly(ethylene glycol) (PEG) surface modification of thin-film composite forward osmosis membranes for organic fouling control. J Memb Sci 450:331–339

    Article  Google Scholar 

  54. 54

    Prime KL, Whitesides GM (1993) Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): a model system using self-assembled monolayers. J Am Chem Soc 115:10714–10721

    Article  Google Scholar 

  55. 55

    Sienkiewicz A, Krasucka P, Charmas B, Stefaniak W, Goworek J (2017) Swelling effects in cross-linked polymers by thermogravimetry. J Therm Anal Calorim 130:85–93

    Article  Google Scholar 

  56. 56

    Buckley DJ, Berger M (1962) The swelling of polymer systems in solvents. II. Mathematics of diffusion. J Polym Sci 56:163–174

    Article  Google Scholar 

  57. 57

    Anne A, Demaille C, Moiroux J (2002) Terminal attachment of polyethylene glycol (PEG) chains to a gold electrode surface. Cyclic voltammetry applied to the quantitative characterization of the flexibility of the attached PEG chains and of their penetration by mobile PEG chains. Macromolecules 35:5578–5586

    Article  Google Scholar 

  58. 58

    Van Wagner EM, Sagle AC, Sharma MM, La YH, Freeman BD (2011) Surface modification of commercial polyamide desalination membranes using poly(ethylene glycol) diglycidyl ether to enhance membrane fouling resistance. J Memb Sci 367:273–287

    Article  Google Scholar 

  59. 59

    Bruinsma GM, van der Mei HC, Busscher HJ (2001) Bactetial adhesion to surface hydrophlic and hydrophobic contact lenses. Biomaterials 22:3217–3224

    Article  Google Scholar 

  60. 60

    Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846

    Article  Google Scholar 

  61. 61

    Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434

    Article  Google Scholar 

  62. 62

    Li D, Zheng Q, Wang Y, Chen H (2014) Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polym Chem 5:14–24

    Article  Google Scholar 

  63. 63

    Lo Hsieh Y, Timm DA (1988) Relationship of substratum wettability measurements and initial Staphylococcus aureau adhesion to films and fabrics. J Colloid Interface Sci 123:275–286

    Article  Google Scholar 

  64. 64

    Jeon SI, Lee JH, Andrade JD (1991) Protein surface interactions in the presence of polyethylene oxide. J Colloid Interface Sci 142:149–158

    Article  Google Scholar 

Download references


This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union—European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education—project Hybrid Materials for Hierarchical Structures (HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843), the OPR&DI project “Extension of CxI facilities” (CZ.1.05/2.1.00/19.0386) and the project SGS 21207, Faculty of Science, Humanities and Education, Technical University of Liberec.

Author information



Corresponding author

Correspondence to Veronika Zajícová.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Swar, S., Zajícová, V., Müllerová, J. et al. Effective poly(ethylene glycol) methyl ether grafting technique onto Nylon 6 surface to achieve resistance against pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa. J Mater Sci 53, 14104–14120 (2018).

Download citation


  • Water Contact Angle (WCAs)
  • Amide Functional Groups
  • Graft Samples
  • Lithiation Reaction
  • Staphylococcus Aureus Strains (S.A.)