Skip to main content

Advertisement

Log in

Hierarchical NiCo layered double hydroxides nanosheets on carbonized CNT/cotton as a high-performance flexible supercapacitor

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Layered double hydroxides (LDHs) are promising Faradaic materials for the construction of high-performance supercapacitors, due to their unique two-dimensional lamellar structures and remarkable stability. Herein, hierarchical porous NiCo LDHs integrated with flexible carbon nanotubes (CNT)/cotton fabric current collector, are realized by a facile method, which exhibits a high capacitance of 811 F g−1 at 0.1 A g−1 in a three-electrode mode. Moreover, the hybrid electrode has been assembled into a flexible supercapacitor device, where the mass capacitance reaches 47.25 F g−1 with a good cycling stability of 94% capacitance retention after 3000 cycles. The better flexibility and conductivity of the CNT, and highly intrinsic electrochemical activity of the NiCo LDHs as well as the superiority of the interwoven structure are responsible for the outstanding performance of the supercapacitor. The elaborate structural design can provide new insights into the construction of high-performance flexible supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Wang Q, Wang X, Xu J et al (2014) Flexible coaxial-type fiber supercapacitor based on NiCo2O4 nanosheets electrodes. Nano Energy 8:44. https://doi.org/10.1016/j.nanoen.2014.05.014

    Article  Google Scholar 

  2. Yan C, Kang W, Wang J et al (2014) Stretchable and wearable electrochromic devices. ACS Nano 8:316

    Article  Google Scholar 

  3. Xie K, Wei B (2014) Materials and structures for stretchable energy storage and conversion devices. AdvMater 26:3592

    Google Scholar 

  4. Gao L, Surjadi JU, Cao K et al (2017) Flexible fiber-shaped supercapacitor based on nickel–cobalt double hydroxide and pen ink electrodes on metallized carbon fiber. ACS Appl Mater Interfaces. https://doi.org/10.1021/acsami.6b16101

    Google Scholar 

  5. Wei C, Xu Q, Chen Z et al (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes Carbohydr. Polym. 169:50. https://doi.org/10.1016/j.carbpol.2017.04.002

    Google Scholar 

  6. Pang S, Gao Y, Choi S (2017) Flexible and stretchable biobatteries: monolithic integration of membrane-free microbial fuel cells in a single textile layer. Adv Energy Mater 8:1702261

    Article  Google Scholar 

  7. Wu H, Geng J, Wang Y, Wang Y, Peng Z, Zheng G (2014) Bias-free, solar-charged electric double-layer capacitors. Nanoscale 6:15316

    Article  Google Scholar 

  8. Zhang Y, Gao Z, Li X (2017) Capillarity composited recycled paper/graphene scaffold for lithium-sulfur batteries with enhanced capacity and extended lifespan. Small. https://doi.org/10.1002/smll.201701927

    Google Scholar 

  9. Zhang Y, Gao Z, Song N, Li X (2016) High-performance supercapacitors and batteries derived from activated banana-peel with porous structures. Electrochim Acta 222:1257. https://doi.org/10.1016/j.electacta.2016.11.099

    Article  Google Scholar 

  10. Gao Z, Zhang Y, Song N, Li X (2016) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 1:6772–6782

    Google Scholar 

  11. Gao Z, Zhang Y, Song N, Li X (2017) Towards flexible lithium-sulfur battery from natural cotton textile. Electrochim Acta 246:507. https://doi.org/10.1016/j.electacta.2017.06.069

    Article  Google Scholar 

  12. Gao Z, Song N, Zhang Y, Li X (2015) Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett 15:8194

    Article  Google Scholar 

  13. Zhang Y, Heim FM, Song N, Bartlett JL, Li X (2017) New insights into mossy Li induced anode degradation and its formation mechanism in Li–S batteries. ACS Energy Lett 2:2696–2705

    Article  Google Scholar 

  14. Fathi M, Saghafi M, Mahboubi F, Mohajerzadeh S (2014) Synthesis and electrochemical investigation of polyaniline/unzipped carbon nanotube composites as electrode material in supercapacitors. Synth Met 198:345. https://doi.org/10.1016/j.synthmet.2014.10.033

    Article  Google Scholar 

  15. Wang X, Jia L, Liu Q et al (2016) Synthesis of 3D flower-like Co3O4/polypyrrole nanosheet networks electrode for high performance supercapacitors. Colloid Surface A 506:646. https://doi.org/10.1016/j.colsurfa.2016.07.021

    Article  Google Scholar 

  16. Chuai M, Yang T, Zhang M (2018) Quantum capacitance of CuS:Ce3 + quantum dots as high-performing supercapacitor electrodes. J Mater Chem A 6:6534–6541

    Article  Google Scholar 

  17. Cakici M, Reddy KR, Alonso-Marroquin F (2017) Advanced electrochemical energy storage supercapacitors based on the flexible carbon fiber fabric-coated with uniform coral-like MnO2 structured electrodes. Chem Eng J 309:151. https://doi.org/10.1016/j.cej.2016.10.012

    Article  Google Scholar 

  18. Zhao Z, Yang Z, Hu Y, Li J, Fan X (2013) Multiple functionalization of multi-walled carbon nanotubes with carboxyl and amino groups. Appl Surf Sci 276:476

    Article  Google Scholar 

  19. Wang Q, Wang X, Liu B et al (2013) NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. J Mater Chem A 1:468. https://doi.org/10.1039/c2ta01283a

    Google Scholar 

  20. Wu H, Lu X, Zheng G, Ho GW (2018) Topotactic engineering of ultrathin 2D nonlayered nickel selenides for full water electrolysis. Adv Energy Mater 8:1702704

    Article  Google Scholar 

  21. Wang X, Sumboja A, Lin M, Yan J, Lee PS (2012) Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device. Nanoscale 4:7266

    Article  Google Scholar 

  22. Li T, Li GH, Li LH et al (2016) Large-scale self-assembly of 3D flower-like hierarchical Ni/Co-LDHs microspheres for high-performance flexible asymmetric supercapacitors. ACS Appl Mater Interfaces 8:2562. https://doi.org/10.1021/acsami.5b10158

    Article  Google Scholar 

  23. Huang Y, Peng L, Liu Y, Zhao G, Chen JY, Yu G (2016) Biobased nano porous active carbon fibers for high-performance supercapacitors. Acs Appl Mater Interfaces 8:15205

    Article  Google Scholar 

  24. Mahmood A, Guo W, Tabassum H, Zou R (2016) Metal-organic framework-based nanomaterials for electrocatalysis. Adv Energy Mater 6:1600423

    Article  Google Scholar 

  25. Wang S, Jing W, Zhu M et al (2015) Molybdenum-carbide-modified nitrogen-doped carbon vesicle encapsulating nickel nanoparticles: a highly efficient, low-cost catalyst for hydrogen evolution reaction. J Am Chem Soc 137:15753

    Article  Google Scholar 

  26. Ma TY, Ran J, Dai S, Jaroniec M, Qiao SZ (2015) Phosphorus-doped graphitic carbon nitrides grown in situ on carbon-fiber paper: flexible and reversible oxygen electrodes. Angew Chem Int Ed Engl 54:4646

    Article  Google Scholar 

  27. Feng JX, Ye SH, Xu H, Tong YX, Li GR (2016) Design and synthesis of FeOOH/CeO2 heterolayered nanotube electrocatalysts for the oxygen evolution reaction. Adv Mater 28:4698

    Article  Google Scholar 

  28. Liu Z, Xu J, Chen D, Shen G (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44:161

    Article  Google Scholar 

  29. Guan C, Liu X, Ren W, Li X, Cheng C, Wang J (2017) Rational design of metal-organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis. Adv Energy Mater. https://doi.org/10.1002/aenm.201602391

    Google Scholar 

  30. Jiang L, Sui Y, Qi J et al (2017) Hierarchical Ni–Co layered double hydroxide nanosheets on functionalized 3D-RGO films for high energy density asymmetric supercapacitor. Appl Surf Sci 426:148. https://doi.org/10.1016/j.apsusc.2017.07.175

    Article  Google Scholar 

  31. Hao T, Sun J, Wang W, Yu D (2018) MWCNTs-COOH/cotton flexible supercapacitor electrode prepared by improvement one-time dipping and carbonization method. Cellulose. https://doi.org/10.1007/s10570-018-1829-9

    Google Scholar 

  32. Liu C, Cai Z, Zhao Y, Zhao H, Ge F (2016) Potentiostatically synthesized flexible polypyrrole/multi-wall carbon nanotube/cotton fabric electrodes for supercapacitors. Cellulose 23:637. https://doi.org/10.1007/s10570-015-0795-8

    Article  Google Scholar 

  33. Yuksel R, Unalan HE (2015) Textile supercapacitors-based on MnO2/SWNT/conducting polymer ternary composites. Int J Energy Res 39:2042. https://doi.org/10.1002/er.3439

    Article  Google Scholar 

  34. Pasta M, Mantia FL, Hu L, Deshazer HD, Cui Y (2010) Aqueous supercapacitors on conductive cotton. Phys Rev B 3:452

    Google Scholar 

  35. Hu LB, Pasta M, La Mantia F et al (2010) Stretchable porous, and conductive energy textiles. Nano Lett 10:708. https://doi.org/10.1021/nl903949m

    Article  Google Scholar 

  36. Hertel T, Walkup RE, Avouris P (1998) Deformation of carbon nanotubes by surface van der Waals forces. Phys Rev B 58:79984

    Article  Google Scholar 

  37. Iijima S, Brabec C, Maiti A, Bernholc J (1996) Structural flexibility of carbon nanotubes. J Chem Phys 104:2089

    Article  Google Scholar 

  38. Hu S, Hsieh YL (2013) Ultrafine microporous and mesoporous activated carbon fibers from alkali lignin. J Mater Chem A 1:11279

    Article  Google Scholar 

  39. Chen PC, Shen G, Shi Y, Chen H, Zhou C (2010) Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 4:4403

    Article  Google Scholar 

  40. Nagaraju G, Raju GS, Ko YH, Yu JS (2015) Hierarchical Ni-Co layered double hydroxide nanosheets entrapped on conductive textile fibers: a cost-effective and flexible electrode for high-performance pseudocapacitors. Nanoscale 8:812

    Article  Google Scholar 

  41. Tang J, Liu D, Zheng Y, Li X, Wang X, He D (2014) Effect of Zn-substitution on cycling performance of a-Co(OH)2 nanosheet electrode for supercapacitors. J Mater Chem A 2:2585

    Article  Google Scholar 

  42. Su Y-Z, Xiao K, Li N, Liu Z-Q, Qiao S-Z (2014) Amorphous Ni(OH)(2) @ three-dimensional Ni core-shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors. J Mater Chem A 2:13845. https://doi.org/10.1039/c4ta02486a

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by “the Fundamental Research Funds for the Central Universities” (No. CUSF-DH-D-2018065). The authors appreciate Dr. Hao Wu in the National University of Singapore for the instructive suggestions on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Yu.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1056 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, T., Wang, W. & Yu, D. Hierarchical NiCo layered double hydroxides nanosheets on carbonized CNT/cotton as a high-performance flexible supercapacitor. J Mater Sci 53, 14485–14494 (2018). https://doi.org/10.1007/s10853-018-2633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2633-5

Keywords

Navigation