Skip to main content

Advertisement

Log in

Rapid microwave-hydrothermal preparation of few-layer MoS2/C nanocomposite as anode for highly reversible lithium storage properties

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

3D nanohybrid structures with few-layered MoS2 nanosheets uniformly incorporated in the carbon substrate are prepared via using the rapid and homogeneous microwave-hydrothermal method, in which the size of the basic unit structure of MoS2/C was small. The samples were systematically investigated by X-ray diffraction, field emission scanning electron microscopy, X-Ray photoelectron spectroscopy and high-resolution transmission electron microscopy for structure and composition test. The electrochemical performances of the composites are evaluated by cyclic voltammogram, galvanostatic charge–discharge and electrochemical impedance spectroscopy. Electrochemical measurements reveal that the maximum-specific capacitance of the MoS2/C electrodes reaches up to 1003 mAh g–1 at a discharge current density 100 mA g–1. The MoS2/C hybrid composite remains 755 mAh g–1 after 50 cycles at the current of 200 mA g–1, much higher than that of the pure MoS2. The superior electrochemical performances of MoS2/C composites as Li-ion battery anodes are attributed to their enhanced available active sites for charges, decreased transmission resistance between interlayers, improved electronic conductivity as well as good mechanical stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Goodenough JB, Park KS (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  2. Mukherjee R, Krishnan R, Lu TM, Koratkar N (2012) Nanostructured electrodes for high-power lithium ion batteries. Nano Energy 1:518–533

    Article  Google Scholar 

  3. Wang S, Ge H, Sun S et al (2015) A new molybdenum nitride catalyst with rhombohedral MoS2 structure for hydrogenation applications. J Am Chem Soc 137:4815–4822

    Article  Google Scholar 

  4. Amani M, Lien DH, Kiriya D et al (2015) Near-unity photoluminescence quantum yield in MoS2. Science 350:1066–1068

    Article  Google Scholar 

  5. Ganatra R, Zhang Q (2014) Few-layer MoS2: a promising layered semiconductor. ACS Nano 8:4074–4099

    Article  Google Scholar 

  6. Christy RI (1980) Sputtered MoS2 lubricant coating improvements. Thin Solid Films 73:299–307

    Article  Google Scholar 

  7. Klinovaja J, Loss D (2013) Spintronics in MoS2 monolayer quantum wires. Phys. Rev. B 88:075401–075406

    Article  Google Scholar 

  8. Huang X, Zeng ZY, Zhang H (2013) Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev 42:1934–1946

    Article  Google Scholar 

  9. Zhang XY, Hou LL, Ciesielski A, Samorì P (2016) 2D materials beyond graphene for high-performance energy storage applications. Nat Chem 5:263–275

    Google Scholar 

  10. Li YF, Wu DH, Zhou Z et al (2012) Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. J Phys Chem Lett 3:2221–2227

    Article  Google Scholar 

  11. Huang GC, Chen T, Chen WX et al (2013) Graphene-like MoS2/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 9:3693–3703

    Article  Google Scholar 

  12. Chang K, Chen WX, Ma L et al (2011) Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries. J Mater Chem 21:6251–6257

    Article  Google Scholar 

  13. Ma L, Ye JB, Chen WX et al (2014) Gemini surfactant assisted hydrothermal synthesis of nanotile-like MoS2/graphene hybrid with enhanced lithium storage performance. Nano Energy 10:144–152

    Article  Google Scholar 

  14. Goriparti S, Miele E, Angelis FD, Fabrizio ED, Zaccaria RP, Capiglia C (2014) Review on recent progress of nanostructured anode materials for Li-ion batteries. J Power Sources 257:421–443

    Article  Google Scholar 

  15. Li HL, Yu K, Fu H, Guo BJ, Lei X, Zhu ZQ (2015) MoS2/graphene hybrid nanoflowers with enhanced electrochemical performances as anode for lithium-ion batteries. J Phys Chem C 119:7959–7968

    Article  Google Scholar 

  16. Wang M, Li GD, Xu HY, Qian YT, Yang J (2013) Enhanced lithium storage performances of hierarchical hollow MoS2 nanoparticles assembled from nanosheets. ACS Appl Mater Interfaces 5:1003–1008

    Article  Google Scholar 

  17. Pan Y, Zhang J, Lu H (2017) Uniform yolk-shell MoS2@carbon microsphere anodes for high-performance lithium-ion batteries. Chem Eur J 23:9937–9945

    Article  Google Scholar 

  18. Xu X, Fan ZY, Yu XY, Ding SJ, Yu DM, Lou XW (2014) A nanosheets-on-channel architecture constructed from MoS2 and CMK-3 for high-capacity and long-cycle-life lithium storage. Adv Energy Mater 4:1400901–1400905

    Google Scholar 

  19. Wang JZ, Lu L, Lotya M et al (2013) Development of MoS2-CNT composite thin film from layered MoS2 for lithium batteries. Adv Energy Mater 3:798–805

    Article  Google Scholar 

  20. Wang B, Zhang Y, Zhang J et al (2017) Facile synthesis of a MoS2 and functionalized graphene heterostructure for enhanced lithium-storage performance. ACS Appl Mater Interfaces 9:12907–12913

    Article  Google Scholar 

  21. Ye JB, Yu Z, Chen WX et al (2016) Facile synthesis of molybdenum disulfide/nitrogen-doped graphene composites for enhanced electrocatalytic hydrogen evolution and electrochemical lithium storage. Carbon 107:711–722

    Article  Google Scholar 

  22. Ji HM, Liu C, Wang T et al (2015) Porous hybrid composites of few-layer MoS2 nanosheets embedded in a carbon matrix with an excellent supercapacitor electrode performance. Small 11:6480–6490

    Article  Google Scholar 

  23. Turner NH, Single AM (1990) Determination of peak positions and areas from wide-scan XPS spectra. Surf Interface Anal 15:215–222

    Article  Google Scholar 

  24. Brault P, Ranson P, Estrade-Szwarckopf H, Rousseau B (1990) Chemical physics of fluorine plasma-etched silicon surfaces: study of surface contaminations. J Appl Phys 68:1702–1709

    Article  Google Scholar 

  25. Zhou X, Wan LJ, Guo YG (2012) Facile synthesis of MoS2@CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 4:5868–5871

    Article  Google Scholar 

  26. Bindumadhavan K, Srivastava SK, Mahanty S (2013) MoS2-MWCNT hybrids as a superior anode in lithium-ion batteries. Chem Commun 49:1823–1825

    Article  Google Scholar 

  27. Xu X, Fan Z, Ding S, Yu D, Du Y (2014) Fabrication of MoS2 nanosheet@TiO2 nanotube hybrid nanostructures for lithium storage. Nanoscale 6:5245–5250

    Article  Google Scholar 

  28. Liu H, Su DW, Zhou RF, Sun B, Wang GX, Qiao SZ (2012) Highly ordered mesoporous MoS2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv Energy Mater 2:970–975

    Article  Google Scholar 

  29. Ma L, Huang GC, Chen WX et al (2014) Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: microstructure and electrochemical lithium storage. J Power Sources 264:262–271

    Article  Google Scholar 

  30. Jing Y, Ortiz-Quiles EO, Cabrera CR, Chen ZF, Zhou Z (2014) Layer-by-layer hybrids of MoS2 and reduced graphene oxide for lithium ion batteries. Electrochim Acta 147:392–400

    Article  Google Scholar 

  31. Hu S, Chen W, Zhou J et al (2014) Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes. J Mater Chem A 2:7862–7872

    Article  Google Scholar 

  32. Zhao C, Kong J, Yao X et al (2014) Thin MoS2 nanoflakes encapsulated in carbon nanofibers as high-performance anodes for lithium-ion batteries. ACS Appl Mater Interfaces 6:6392–6398

    Article  Google Scholar 

  33. Weppner W, Huggins RA (1977) Determination of the kinetic parameters of mixed-conducting electrodes and application to the system Li3Sb. J Electrochem Soc 124:1569–1578

    Article  Google Scholar 

  34. Wan Z, Shao J, Yun J et al (2014) Core-shell structure of hierarchical quasi-hollow MoS2 microspheres encapsulated porous carbon as stable anode for Li-ion batteries. Small 10:4975–4981

    Article  Google Scholar 

  35. He G, Evers S, Liang X, Cuisinier M, Garsuch A, Nazar L (2013) Tailoring porosity in carbon nanospheres for lithium sulfur battery cathodes. ACS Nano 7:10920–10930

    Article  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the Natural Science Foundation of Jiangsu Province (BK20160409), the National Natural Science Foundation of China (21173116) and the University Science Research Project of Jiangsu Province (Grant No. 16KJB430001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhua Hou or Gang Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, H., Hu, S., Shi, S. et al. Rapid microwave-hydrothermal preparation of few-layer MoS2/C nanocomposite as anode for highly reversible lithium storage properties. J Mater Sci 53, 14548–14558 (2018). https://doi.org/10.1007/s10853-018-2631-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2631-7

Keywords

Navigation