Skip to main content
Log in

Effects of scandium addition on the in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr alloy

  • Biomaterials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Heretofore, recognitions of the systematic effects of scandium addition on corrosion behavior of biodegradable magnesium alloys are not yet clear. In the present study, a series of Mg–1.5Zn–0.6Zr–xSc (ZK21–xSc, x = 0, 0.2, 0.5, 1.0 wt.%) alloys were casted and investigated with respect to the immersion and electrochemical degradation behavior. The hydrogen evolution, pH monitoring, ion release and mass loss results demonstrated that ZK21–0.2Sc alloy exhibited the lowest corrosion rate. The surface morphology analyses displayed that an obvious uniform corrosion occurred in ZK21–xSc alloys with Sc content below 0.5, while localized corrosion occurred in ZK21–1.0Sc alloy. Corrosion potentials of ZK21–xSc alloys shifted toward more positive with the increasing Sc content. But ZK21–0.2Sc alloy exhibited the lowest corrosion current density and the largest corrosion film resistance. Compared with other developed Mg alloys, the ZK21–0.2Sc alloy demonstrated a superior degradation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9: a
Figure 10

Similar content being viewed by others

References

  1. Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng R 77:1–34

    Article  Google Scholar 

  2. Zhao D, Witte F, Lu F, Wang J, Li J, Qin L (2017) Current status on clinical applications of magnesium-based orthopaedic implants: a review from clinical translational perspective. Biomaterials 112:287–302

    Article  Google Scholar 

  3. Waizy H, Seitz J-M, Reifenrath J, Weizbauer A, Bach F-W, Meyer-Lindenberg A, Denkena B, Windhagen H (2013) Biodegradable magnesium implants for orthopedic applications. J Mater Sci 48:39–50. https://doi.org/10.1007/s10853-012-6572-2

    Article  Google Scholar 

  4. Kim YK, Park IS, Lee KB, Lee SJ, Bae TS, Lee MH (2015) Characterization and biocompatibility of a calcium-containing AZ31B alloy as a biodegradable material. J Mater Sci 50:4672–4682. https://doi.org/10.1007/s10853-015-9018-9

    Article  Google Scholar 

  5. Li JN, Cao P, Zhang XN, Zhang SX, He YH (2010) In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy. J Mater Sci 45:6038–6045. https://doi.org/10.1007/s10853-010-4688-9

    Article  Google Scholar 

  6. Silva CLP, Oliveira AC, Costa CGF, Figueiredo RB, Leite MD, Pereira MM, Lins VFC, Langdon TG (2017) Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium. J Mater Sci 52:5992–6003. https://doi.org/10.1007/s10853-017-0835-x

    Article  Google Scholar 

  7. Atrens A, Song GL, Liu M, Shi ZM, Cao FY, Dargusch MS (2015) Review of recent developments in the field of magnesium corrosion. Adv Eng Mater 17:400–453

    Article  Google Scholar 

  8. Gale WF, Totemeier TC (2004) Smithells metals reference book, 8th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  9. Ma N, Peng Q (2012) Influence of scandium on corrosion properties and electrochemical behaviour of Mg alloys in different media. Int J Electrochem Sci 7:8020–8034

    Google Scholar 

  10. Brar HS, Ball JP, Berglund IS, Allen JB, Manuel MV (2013) A study of a biodegradable Mg–3Sc–3Y alloy and the effect of self-passivation on the in vitro degradation. Acta Biomater 9:5331–5340

    Article  Google Scholar 

  11. Brar HS, Berglund IS, Allen JB, Manuel MV (2014) The role of surface oxidation on the degradation behavior of biodegradable Mg–RE (Gd, Y, Sc) alloys for resorbable implants. Mater Sci Eng C 40:407–417

    Article  Google Scholar 

  12. Li T, Zhang H, He Y, Wen N, Wang X (2015) Microstructure, mechanical properties and in vitro degradation behavior of a novel biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy. J Mater Sci Technol 31:744–750

    Article  Google Scholar 

  13. Li T, Zhang HL, Tang SQ, Yang YS, Zhou JX, Wang XT (2017) Improvement of mechanical properties and in vitro degradation resistance of biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy by extrusion. Mater Sci Forum 898:236–245

    Article  Google Scholar 

  14. Li T, He Y, Zhou J, Tang S, Yang Y, Wang X (2018) Influence of albumin on in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr–0.2Sc alloy. Mater Lett 217:227–230

    Article  Google Scholar 

  15. Li T, He Y, Zhou J, Tang S, Yang Y, Wang X (2018) Effects of scandium addition on biocompatibility of biodegradable Mg–1.5Zn–0.6Zr alloy. Mater Lett 215:200–202

    Article  Google Scholar 

  16. Zeng RC, Sun L, Zheng YF, Cui HZ, Han EH (2014) Corrosion and characterisation of dual phase Mg–Li–Ca alloy in Hank’s solution: the influence of microstructural features. Corros Sci 79:69–82

    Article  Google Scholar 

  17. Song GL, Atrens A (2003) Understanding magnesium corrosion—a framework for improved alloy performance. Adv Eng Mater 5:837–858

    Article  Google Scholar 

  18. Song G, Atrens A, StJohn D (2001) An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. In: Mathaudhu SN, Luo AA, Neelameggham NR, Nyberg EA, Sillekens WH (eds) Essential readings in magnesium technology. Springer, Cham, pp 565–572

    Google Scholar 

  19. Han P, Cheng P, Zhang S, Zhao C, Ni J, Zhang Y, Zhong W, Hou P, Zhang X, Zheng Y, Chai Y (2015) In vitro and in vivo studies on the degradation of high-purity Mg (99.99wt.%) screw with femoral intracondylar fractured rabbit model. Biomaterials 64:57–69

    Article  Google Scholar 

  20. Shi Z, Liu M, Atrens A (2010) Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci 52:579–588

    Article  Google Scholar 

  21. Choubey A, Marton D, Sprague E (2009) Human aortic endothelial cell response to 316L stainless steel material microstructure. J Mater Sci Mater Med 20:2105–2116

    Article  Google Scholar 

  22. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72

    Article  Google Scholar 

  23. Song GL, Atrens A (1999) Corrosion mechanisms of magnesium alloys. Adv Eng Mater 1:11–33

    Article  Google Scholar 

  24. Alvarez-Lopez M, Pereda MD, del Valle JA, Fernandez-Lorenzo M, Garcia-Alonso MC, Ruano OA, Escudero ML (2010) Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater 6:1763–1771

    Article  Google Scholar 

  25. Zucchi F, Grassi V, Frignani A, Monticelli C, Trabanelli G (2006) Electrochemical behaviour of a magnesium alloy containing rare earth elements. J Appl Electrochem 36:195–204

    Article  Google Scholar 

  26. Arrabal R, Pardo A, Merino MC, Mohedano M, Casajús P, Paucar K, Garcés G (2012) Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5wt.% NaCl solution. Corros Sci 55:301–312

    Article  Google Scholar 

  27. Xin Y, Hu T, Chu PK (2011) In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomater 7:1452–1459

    Article  Google Scholar 

  28. Jeong YS, Kim WJ (2014) Enhancement of mechanical properties and corrosion resistance of Mg–Ca alloys through microstructural refinement by indirect extrusion. Corros Sci 82:392–403

    Article  Google Scholar 

  29. Dinodi N, Nityananda Shetty A (2013) Electrochemical investigations on the corrosion behaviour of magnesium alloy ZE41 in a combined medium of chloride and sulphate. J Magnes Alloys 1:201–209

    Article  Google Scholar 

  30. Zainal Abidin NI, Rolfe B, Owen H, Malisano J, Martin D, Hofstetter J, Uggowitzer PJ, Atrens A (2013) The in vivo and in vitro corrosion of high-purity magnesium and magnesium alloys WZ21 and AZ91. Corros Sci 75:354–366

    Article  Google Scholar 

  31. Johnston S, Shi Z, Atrens A (2015) The influence of pH on the corrosion rate of high-purity Mg, AZ91 and ZE41 in bicarbonate buffered Hanks’ solution. Corros Sci 101:182–192

    Article  Google Scholar 

  32. Hermawan H, Dubé D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6:1693–1697

    Article  Google Scholar 

  33. Ren YB, Huang JJ, Yang K, Zhang BC, Yao ZM, Wang H (2005) Study of bio-corrosion of pure magnesium. Acta Metall Sin 41:1228–1232

    Google Scholar 

  34. Liu CL, Wang YJ, Zeng RC, Zhang XM, Huang WJ, Chu PK (2010) In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corros Sci 52:3341–3347

    Article  Google Scholar 

  35. Hou RQ, Scharnagl N, Feyerabend F, Willumeit-Römer R (2018) Exploring the effects of organic molecules on the degradation of magnesium under cell culture conditions. Corros Sci 132:35–45

    Article  Google Scholar 

  36. Zeng RC, Li XT, Li SQ, Zhang F, Han EH (2015) In vitro degradation of pure Mg in response to glucose. Sci Rep 5:13026

    Article  Google Scholar 

  37. Wang Y, Cui LY, Zeng RC, Li S-Q, Zou YH, Han EH (2017) In vitro degradation of pure magnesium—the effects of glucose and/or amino acid. Materials 10:725

    Article  Google Scholar 

  38. Witte F, Fischer J, Nellesen J, Crostack H-A, Kaese V, Pisch A, Beckmann F, Windhagen H (2006) In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials 27:1013–1018

    Article  Google Scholar 

  39. Zainal Abidin NI, Atrens AD, Martin D, Atrens A (2011) Corrosion of high purity Mg, Mg2Zn0.2Mn, ZE41 and AZ91 in Hank’s solution at 37 °C. Corros Sci 53:3542–3556

    Article  Google Scholar 

  40. Li T, He Y, Zhang H, Wang X (2014) Microstructure, mechanical property and in vitro biocorrosion behavior of single-phase biodegradable Mg–1.5Zn–0.6Zr alloy. J Magnes Alloys 2:181–189

    Article  Google Scholar 

  41. Brar HS, Wong J, Manuel MV (2012) Investigation of the mechanical and degradation properties of Mg–Sr and Mg–Zn–Sr alloys for use as potential biodegradable implant materials. J Mech Behav Biomed Mater 7:87–95

    Article  Google Scholar 

  42. Zhang B, Hou Y, Wang X, Wang Y, Geng L (2011) Mechanical properties, degradation performance and cytotoxicity of Mg–Zn–Ca biomedical alloys with different compositions. Mater Sci Eng C 31:1667–1673

    Article  Google Scholar 

  43. Yin DS, Zhang EL, Zeng SY (2008) Effect of Zn on mechanical properties and corrosion properties of as-cast Mg–Mn alloy. Chin J Nonferrous Met 18:388–393 (in chinese)

    Article  Google Scholar 

  44. Zhang E, Yang L (2008) Microstructure, mechanical properties and bio-corrosion properties of Mg–Zn–Mn–Ca alloy for biomedical application. Mater Sci Eng A 497:111–118

    Article  Google Scholar 

  45. Zhang E, Yang L, Xu J, Chen H (2010) Microstructure, mechanical properties and bio-corrosion properties of Mg–Si(–Ca, Zn) alloy for biomedical application. Acta Biomater 6:1756–1762

    Article  Google Scholar 

  46. Zong Y, Yuan G, Zhang X, Mao L, Niu J, Ding W (2012) Comparison of biodegradable behaviors of AZ31 and Mg–Nd–Zn–Zr alloys in Hank’s physiological solution. Mater Sci Eng B 177:395–401

    Article  Google Scholar 

Download references

Acknowledgements

This project was financially supported by National Natural Science Foundation of China (No. 51174025), National Key Research and Development Program of China (Nos. 2016YFB0301105 and 2017YFB0103904), Shandong Provincial Natural Science Foundation (No. ZR2017LEM002), Specialized Fund for Shandong Postdoctoral Innovation Project (No. 201703093) and Youth Science Funds of Shandong Academy of Sciences (No. 2018QN0034). The authors thank Hailong Zhang at University of Science and Technology Beijing and Xiwei Liu at Lepu Medical Technology (Beijing) Co., Ltd. for meaningful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Li or Xitao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, T., He, Y., Wu, J. et al. Effects of scandium addition on the in vitro degradation behavior of biodegradable Mg–1.5Zn–0.6Zr alloy. J Mater Sci 53, 14075–14086 (2018). https://doi.org/10.1007/s10853-018-2626-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2626-4

Keywords

Navigation