Skip to main content
Log in

Influence of solvents on the plasmonic properties of indium-doped zinc oxide nanocrystals

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The localized surface plasmon resonance (LSPR) behavior of indium-doped ZnO (IZO) nanocrystals synthesized in different solvents was studied. 1-octadecanol, oleic acid, oleyl alcohol, oleyl amine and 1-octadecene were used as solvent(s) and co-solvent(s) in the pyrolysis synthesis of indium-doped ZnO (IZO) nanoparticles. The results showed that the nanocrystals from a solvent system consisting of 1-octadecene, 1-octadecanol, and oleic acid exhibited enhanced LSPR near-infrared radiation absorption without sacrificing transparency in the visible region. The indium-rich core verified using ICP and XPS analysis was shown to be critical for the enhancement. The reaction mechanism of solvents on the generation of indium-rich core was elucidated through a systematic study of the reaction parameters. The interaction between the activating agent, inhibiting agent and solvent, and their effect on tuning the reactivity of dopant and host precursors were important for the formation of a nanostructure with a dopant-rich core. The solvent effect was also found in the synthesis of gallium-doped ZnO and confirmed to be a general phenomenon in the preparation of doped ZnO nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hamberg I, Granqvist CG (1986) Evaporated Sn-doped In2O3 films: basic optical properties and applications to energy-efficient windows. J Appl Phys 60:R123–R160

    Article  Google Scholar 

  2. Yang C, Chen JF, Zeng X, Cheng D, Cao D (2014) Design of the alkali-metal-doped WO3 as a near-infrared shielding material for smart window. Ind Eng Chem Res 53:17981–17988

    Article  Google Scholar 

  3. Goodman AM, Cao Y, Urban C, Neumann O, Ayala-Orozco C, Knight MW, Joshi A, Nordlander P, Halas NJ (2014) The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells. ACS Nano 8:3222–3231

    Article  Google Scholar 

  4. Chen Y, Wu H, Li Z, Wang P, Yang L, Fang Y (2012) The study of surface plasmon in Au/Ag core/shell compound nanoparticles. Plasmonics 7:509–513

    Article  Google Scholar 

  5. Gao C, Lu Z, Liu Y, Zhang Q, Chi M, Cheng Q, Yin Y (2012) Highly stable silver nanoplates for surface plasmon resonance biosensing. Angew Chem Int Ed 51:5629–5633

    Article  Google Scholar 

  6. Lounis SD, Runnerstrom EL, Llordés A, Milliron DJ (2014) Defect chemistry and plasmon physics of colloidal metal oxide nanocrystals. J Phys Chem Lett 5:1564–1574

    Article  Google Scholar 

  7. Comin A, Manna L (2014) New materials for tunable plasmonic colloidal nanocrystals. Chem Soc Rev 43:3957–3975

    Article  Google Scholar 

  8. Liu X, Swihart MT (2014) Heavily-doped colloidal semiconductor and metal oxide nanocrystals: an emerging new class of plasmonic nanomaterials. Chem Soc Rev 43:3908–3920

    Article  Google Scholar 

  9. Shalaev VM, Kawata S (2006) Nanophotonics with surface plasmons. Elsevier, New York City

    Google Scholar 

  10. Nico J, Fischer MJ, Mol NJ, Fischer MJ (2010) Surface plasmon resonance: methods and protocols

  11. Kanehara M, Koike H, Yoshinaga T, Teranishi T (2009) Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J Am Chem Soc 131:17736–17737

    Article  Google Scholar 

  12. Garcia G, Buonsanti R, Runnerstrom EL, Mendelsberg RJ, Llordes A, Anders A, Richardson TJ, Milliron DJ (2011) Dynamically modulating the surface plasmon resonance of doped semiconductor nanocrystals. Nano Lett 11:4415–4420

    Article  Google Scholar 

  13. Xu J, Li L, Wang S, Ding H, Zhang Y, Li G (2013) Influence of Sb doping on the structural and optical properties of tin oxide nanocrystals. CrystEngComm 15:3296–3300

    Article  Google Scholar 

  14. Esro M, Georgakopoulos S, Lu H, Vourlias G, Krier A, Milne W, Gillin W, Adamopoulos G (2016) Solution processed SnO2: Sb transparent conductive oxide as an alternative to indium tin oxide for applications in organic light emitting diodes. J Mater Chem C 4:3563–3570

    Article  Google Scholar 

  15. Gordon TR, Paik T, Klein DR, Naik GV, Caglayan H, Boltasseva A, Murray CB (2013) Shape-dependent plasmonic response and directed self-assembly in a new semiconductor building block, indium-doped cadmium oxide (ICO). Nano Lett 13:2857–2863

    Article  Google Scholar 

  16. Wang F, Wang Q, Xu G, Hui R, Wu J (2013) Light trapping on plasmonic-photonic nanostructured fluorine-doped tin oxide. J Phys Chem C 117:11725–11730

    Article  Google Scholar 

  17. Manthiram K, Alivisatos AP (2012) Tunable localized surface plasmon resonances in tungsten oxide nanocrystals. J Am Chem Soc 134:3995–3998

    Article  Google Scholar 

  18. Ghosh S, Saha M, De SK (2014) Tunable surface plasmon resonance and enhanced electrical conductivity of In doped ZnO colloidal nanocrystals. Nanoscale 6:7039–7051

    Article  Google Scholar 

  19. Liang X, Ren Y, Bai S, Zhang N, Dai X, Wang X, He H, Jin C, Ye Z, Chen Q (2014) Colloidal indium-doped zinc oxide nanocrystals with tunable work function: rational synthesis and optoelectronic applications. Chem Mater 26:5169–5178

    Article  Google Scholar 

  20. Yibi Y, Chen JW, Xue J, Song JZ, Zeng HB (2017) Enhancement of adjustable localized surface plasmon resonance in ZnO nanocrystals via a dual doping approach. Sci Bull 62:693–699

    Article  Google Scholar 

  21. Saha M, Ghosh S, Ashok VD, De S (2015) Carrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals. Phys Chem Chem Phys 17:16067–16079

    Article  Google Scholar 

  22. Hamza M, Bluet JM, Masenelli-Varlot K, Canut B, Boisron O, Melinon P, Masenelli B (2015) Tunable mid IR plasmon in GZO nanocrystals. Nanoscale 7:12030–12037

    Article  Google Scholar 

  23. Buonsanti R, Llordes A, Aloni S, Helms BA, Milliron DJ (2011) Tunable infrared absorption and visible transparency of colloidal aluminum-doped zinc oxide nanocrystals. Nano Lett 11:4706–4710

    Article  Google Scholar 

  24. Della Gaspera E, Duffy NW, van Embden J, Waddington L, Bourgeois L, Jasieniak JJ, Chesman AS (2015) Plasmonic Ge-doped ZnO nanocrystals. Chem Commun 51:12369–12372

    Article  Google Scholar 

  25. Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T (2004) Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater 3:891–895

    Article  Google Scholar 

  26. Narayanaswamy A, Xu H, Pradhan N, Kim M, Peng X (2006) Formation of nearly monodisperse In2O3 nanodots and oriented-attached nanoflowers: hydrolysis and alcoholysis vs pyrolysis. J Am Chem Soc 128:10310–10319

    Article  Google Scholar 

  27. Choi SH, Kim EG, Park J, An K, Lee N, Kim SC, Hyeon T (2005) Large-scale synthesis of hexagonal pyramid-shaped ZnO nanocrystals from thermolysis of Zn-oleate complex. J Phys. Chem. B 109:14792–14794

    Article  Google Scholar 

  28. Song JZ, Kulinich SA, Li JH, Liu YL, Zeng HB (2015) A general one-pot strategy for the synthesis of high-performance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angew Chem 127:472–476

    Article  Google Scholar 

  29. Luo SJ, Feng JY, Ng KM (2014) Large scale synthesis of nearly monodisperse, variable-shaped In2O3 nanocrystals via a one-pot pyrolysis reaction. CrystEngComm 16:9236–9244

    Article  Google Scholar 

  30. Dou Q, Ng KM (2016) Synthesis of various metal stearates and the corresponding monodisperse metal oxide nanoparticles. Powder Technol 301:949–958

    Article  Google Scholar 

  31. Luo SJ, Yang DN, Feng JY, Ng KM (2014) Synthesis and application of non-agglomerated ITO nanocrystals via pyrolysis of indium-tin stearate without using additional organic solvents. J Nanopart Res 16:2561

    Article  Google Scholar 

  32. Bryan JD, Gamelin DR (2005) Doped semiconductor nanocrystals: synthesis, characterization, physical properties, and applications. Prog Inorg Chem 54:47–126

    Article  Google Scholar 

  33. Norris DJ, Efros AL, Erwin SC (2008) Doped nanocrystals. Science 319:1776–1779

    Article  Google Scholar 

  34. Jansons AW, Plummer LK, Hutchison JE (2017) Living nanocrystals. Chem Mater 29:5415–5425

    Article  Google Scholar 

  35. Jansons AW, Koskela KM, Crockett BM, Hutchison JE (2017) Transition metal-doped metal oxide nanocrystals: efficient substitutional doping through a continuous growth process. Chem Mater 29:8167–8176

    Article  Google Scholar 

  36. Crockett BM, Jansons AW, Koskela KM, Johnson DW, Hutchison JE (2017) Radial dopant placement for tuning plasmonic properties in metal oxide nanocrystals. ACS Nano 11:7719–7728

    Article  Google Scholar 

  37. Jansons AW, Hutchison JE (2016) Continuous growth of metal oxide nanocrystals: enhanced control of nanocrystal size and radial dopant distribution. ACS Nano 10:6942–6951

    Article  Google Scholar 

  38. Gu Y, Zhu ZF, Song JZ, Zeng HB (2017) Triangle-, tripod-, and tetrapod-branched ITO nanocrystals for anisotropic infrared plasmonics. Nanoscale 9:19374

    Article  Google Scholar 

  39. Della Gaspera E, Chesman AS, van Embden J, Jasieniak JJ (2014) Non-injection synthesis of doped zinc oxide plasmonic nanocrystals. ACS Nano 8:9154–9163

    Article  Google Scholar 

  40. Mendelsberg RJ, Garcia G, Milliron DJ (2012) Extracting reliable electronic properties from transmission spectra of indium tin oxide thin films and nanocrystal films by careful application of the Drude theory. J Appl Phys 111:063515

    Article  Google Scholar 

  41. Mendelsberg RJ, Zhu Y, Anders A (2012) Determining the nonparabolicity factor of the CdO conduction band using indium doping and the Drude theory. J Phys D Appl Phys 45:425302

    Article  Google Scholar 

  42. Pignataro B, Grasso G, Renna L, Marletta G (2002) Adhesion properties on nanometric scale of silicon oxide and silicon nitride surfaces modified by 1-octadecene. Surf Interface Anal 33:54–58

    Article  Google Scholar 

  43. Schimpf AM, Ochsenbein ST, Buonsanti R, Milliron DJ, Gamelin DR (2012) Comparison of extra electrons in colloidal n-type Al3+-doped and photochemically reduced ZnO nanocrystals. Chem Commun 48:9352–9354

    Article  Google Scholar 

  44. Buonsanti R, Milliron DJ (2013) Chemistry of doped colloidal nanocrystals. Chem Mater 25:1305–1317

    Article  Google Scholar 

  45. Srivastava BB, Jana S, Karan NS, Paria S, Jana NR, Sarma D, Pradhan N (2010) Highly luminescent Mn-doped ZnS nanocrystals: gram-scale synthesis. J Phys Chem Lett 1:1454–1458

    Article  Google Scholar 

  46. Yang Y, Jin Y, He H, Wang Q, Tu Y, Lu H, Ye Z (2010) Dopant-induced shape evolution of colloidal nanocrystals: the case of zinc oxide. J Am Chem Soc 132:13381–13394

    Article  Google Scholar 

  47. Felde UZ, Maase M, Weller H (2000) Electrochromism of highly doped nanocrystalline SnO2: Sb. J Phys Chem B 104:9388–9395

    Article  Google Scholar 

  48. Agrawal A, Cho SH, Zandi O, Ghosh S, Johns RW (2017) Localized surface plasmon resonance in semiconductor nanocrystals. Chem Rev 118:3121–3207

    Article  Google Scholar 

  49. Boschloo G, Fitzmaurice D (1999) Spectroelectrochemistry of highly doped nanostructured tin dioxide electrodes. J Phys Chem B 103:3093–3098

    Article  Google Scholar 

  50. Gassenbauer Y, Schafranek R, Klein A (2006) Surface states, surface potentials, and segregation at surfaces of tin-doped In2O3. Phys Rev 73:245312

    Article  Google Scholar 

  51. Gassenbauer Y, Andreas K (2004) Electronic surface properties of rf-magnetron sputtered In2O3:Sn. Solid State Ionics 173:141–145

    Article  Google Scholar 

  52. Fan JC, Goodenough JB (1977) X-ray photoemission spectroscopy studies of Sn-doped indium-oxide films. J Appl Phys 48:3524–3531

    Article  Google Scholar 

  53. Boles MA, Ling D, Hyeon T, Talapin DV (2016) The surface science of nanocrystals. Nat Mater 15:141–153

    Article  Google Scholar 

  54. Houtepen AJ, Hens Z, Owen JS, Infante I (2017) On the origin of surface traps in colloidal II–VI semiconductor nanocrystals. Chem Mater 29:752–761

    Article  Google Scholar 

  55. Veamatahau A, Jiang B, Seifert T, Makuta S, Latham K, Kanehara M, Teranishi T, Tachibana Y (2015) Origin of surface trap states in CdS quantum dots: relationship between size dependent photoluminescence and sulfur vacancy trap states. Phys Chem Chem Phys 17:2850–2858

    Article  Google Scholar 

  56. Greenberg BL, Ganguly S, Held JT, Kramer NJ, Mkhoyan KA, Aydil ES, Kortshagen UR (2015) Nonequilibrium-plasma-synthesized ZnO nanocrystals with plasmon resonance tunable via Al doping and quantum confinement. Nano Lett 15:8162–8169

    Article  Google Scholar 

  57. Jang Y, Shapiro A, Isarov M, Rubin-Brusilovski A, Safran A, Budniak AK, Horani F, Dehnel J, Sashchiuk A, Lifshitz E (2017) Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem Commun 53:1002–1024

    Article  Google Scholar 

  58. Lounis SD, Runnerstrom EL, Bergerud A, Nordlund D, Milliron DJ (2014) Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals. J Am Chem Soc 136:7110–7116

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ka Ming Ng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1790 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Q., Wong, K.W., Li, Y. et al. Influence of solvents on the plasmonic properties of indium-doped zinc oxide nanocrystals. J Mater Sci 53, 14456–14468 (2018). https://doi.org/10.1007/s10853-018-2624-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2624-6

Keywords

Navigation