Skip to main content
Log in

Field effect properties of single-layer MoS2(1−x)Se2x nanosheets produced by a one-step CVD process

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In recent years, interfacial doping with other atoms, molecules, and nanoparticles in molybdenum disulfide (MoS2) has been proven as a new route to explore the potential application of 2D materials in microelectronical devices. In this paper, we utilized a one-step chemical vapor deposition approach to synthesize monolayer MoS2(1−x)Se2x nanosheets in atmospheric pressure using MoO3, S, and Se powders as precursors. AFM and visible-light microscopy showed that the as-grown nanosheets were single layers, their surface was atomic flat, and the maximum grain size was over 100 μm. XPS characterization demonstrated that the concentration of selenium in MoS2(1−x)Se2x nanosheets was affected by the amount of selenium powder in the doping process. The back-gate FETs were fabricated to investigate the electrical properties of monolayer MoS2(1−x)Se2x nanosheets with different Se contents. The field effect properties of MoS2(1−x)Se2x (x = 0.65) transistors indicated that a moderate mobility was achieved, and ohmic contact was obtained at the interface of the MoS2(1−x)Se2x channel and metal electrodes. Characterization using high-resolution transmission electron microscopy showed that the microstructure of as-grown MoS2(1−x)Se2x (x = 0.65) had a regular hexagonal lattice structure, which revealed that it was a single-crystalline two-dimensional material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zheng B, Wang Z, Qi F et al (2017) CVD growth of large-area and high-quality HfS2 nanoforest on diverse substrates. Appl Surf Sci 435:563–567

    Article  Google Scholar 

  2. Hu P, Wang L, Yoon M et al (2013) Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates. Nano Lett 13:1649–1654

    Article  Google Scholar 

  3. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6:147–150

    Article  Google Scholar 

  4. Cain JD, Shi F, Wu J, Dravid VP (2016) Growth mechanism of transition metal dichalcogenide monolayers: the role of self-seeding fullerene nuclei. ACS Nano 10:5440

    Article  Google Scholar 

  5. Ling X, Lee Y, Lin Y, Fang W, Yu L, Dresselhaus M, Kong J (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett 14:464–472

    Article  Google Scholar 

  6. Antonelou A, Sygellou GL, Leftheriotis G, Dracopoulos V, Yannopoulos SN (2016) Facile, substrate-scale growth of mono- and few-layer homogeneous MoS2 films on Mo foils with enhanced catalytic activity as counter electrodes in DSSCs. Nanotechnology 27:045404

    Article  Google Scholar 

  7. Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111

    Article  Google Scholar 

  8. Feng Y, Zhang K, Wang F et al (2015) Synthesis of large-area highly crystalline monolayer molybdenum disulfide with tunable grain size in a H2 atmosphere. ACS Appl Mater Inter 7:22587–22593

    Article  Google Scholar 

  9. Desai SB, Madhvapathy SR, Sachid AB et al (2016) MoS2 transistors with 1-nanometer gate lengths. Science 354:99–102

    Article  Google Scholar 

  10. Radisavljevic B, Whitwick MB, Kis A (2012) Small-signal amplifier based on single-layer MoS2. Appl Phys Lett 101:66

    Article  Google Scholar 

  11. Tsai DS, Liu KK, Lien DH et al (2013) Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano 7:3905–3911

    Article  Google Scholar 

  12. Chen X, Yang H, Liu G et al (2018) Hollow spherical nanoshell arrays of 2D layered semiconductor for high-performance photodetector device. Adv Funct Mater 28:1705153

    Article  Google Scholar 

  13. Chhetri M, Gupta U, Yadgarov L, Rosentsveig R, Tennec R, Rao CNR (2015) Beneficial effect of Re doping on the electrochemical HER activity of MoS2 fullerenes. Dalton Trans 44:16399

    Article  Google Scholar 

  14. Cao X, Shi Y, Shi W, Rui X, Yan Q, Kong J, Zhang H (2013) Preparation of MoS2-coated three-dimensional graphene networks for high-performance anode material in lithium-ion batteries. Small 9:3433–3438

    Article  Google Scholar 

  15. Wang Z, Li Q, Xu H et al (2018) Controllable etching of MoS2 basal planes for enhanced hydrogen evolution through the formation of active edge sites. Nano Energy 49:634–643

    Article  Google Scholar 

  16. Du Y, Liu H, Neal AT, Si M, Ye PD (2013) Molecular doping of multilayer MoS2 field-effect transistors: reduction in sheet and contact resistances. IEEE Electron Device Lett 34:1328–1330

    Article  Google Scholar 

  17. Fang H, Tosun M, Seol G, Chang TC, Takei K, Guo J, Javey A (2013) Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett 13:1991–1995

    Article  Google Scholar 

  18. Eshun K, Xiong HD, Yu S, Li Q (2015) Doping induces large variation in the electrical properties of MoS2 monolayers. Solid State Electron 106:44–49

    Article  Google Scholar 

  19. Dolui K, Rungger I, Pemmaraju CD, Sanvito S (2013) Possible doping strategies for MoS2 monolayers: an ab initio study. Phys Rev B 88:4192–4198

    Article  Google Scholar 

  20. Feng Q, Zhu Y, Hong J et al (2014) Growth of large-area 2D MoS2(1−x)Se2x semiconductor alloys. Adv Mater 26:2648–2653

    Article  Google Scholar 

  21. Zhang W, Li X, Jiang T, Song J, Lin Y, Zhu L, Xu X (2015) CVD synthesis of Mo(1−x)WxS2 and MoS2(1−x)Se2x alloy monolayers aimed at tuning the bandgap of molybdenum disulfide. Nanoscale 7:13554–13560

    Article  Google Scholar 

  22. Mann J, Ma Q, Odenthal PM et al (2014) 2-Dimensional transition metal dichalcogenides with tunable direct band gaps: MoS2(1–x)Se2x monolayers. Adv Mater 26:1399–1404

    Article  Google Scholar 

  23. Li H, Zhang Q, Duan X et al (2015) Lateral growth of composition graded atomic layer MoS2(1−x)Se2x nanosheets. J Am Chem Soc 137:5284–5287

    Article  Google Scholar 

  24. Lu X, Utama MIB, Lin J et al (2014) Large-area synthesis of monolayer and few-layer MoSe2 films on SiO2 substrates. Nano Lett 14:2419

    Article  Google Scholar 

  25. Li Y, Zhang K, Wang F, Feng Y, Li Y, Han Y, Tang D, Zhang B (2017) Scalable synthesis of highly crystalline MoSe2 and its ambipolar behavior. ACS Appl Mater Inter 9:36009–36016

    Article  Google Scholar 

  26. Huang JK, Pu J, Hsu CL et al (2014) Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8:923–930

    Article  Google Scholar 

  27. Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L (2015) Growth of MoS2(1−x)Se2x (x = 0.41–1.00) monolayer alloys with controlled morphology by physical vapor deposition. ACS Nano 9:7450–7455

    Article  Google Scholar 

  28. Kiran V, Mukherjee D, Jenjeti RN, Sampath S (2014) Active guests in the MoS2/MoSe2 host lattice: efficient hydrogen evolution using few-layer alloys of MoS2(1-x)Se2x. Nanoscale 6:12856–12863

    Article  Google Scholar 

  29. Zheng B, Chen Y, Qi F et al (2017) 3D-hierarchical MoSe2 nanoarchitecture as a highly efficient electrocatalyst for hydrogen evolution. 2D Mater 4:025092

    Article  Google Scholar 

  30. Gong Q, Cheng L, Liu C et al (2015) Ultrathin MoS2(1−x)Se2x alloy nanoflakes for electrocatalytic hydrogen evolution reaction. ACS Catal 5:2213–2219

    Article  Google Scholar 

  31. Das S, Chen HY, Penumatcha AV, Appenzeller J (2012) High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 13:100–105

    Article  Google Scholar 

  32. Susarla S, Kutana A, Hachtel JA et al (2017) Quaternary 2D transition metal dichalcogenides (TMDs) with tunable bandgap. Adv Mater 29:1702457

    Article  Google Scholar 

  33. Feng W, Zheng W, Cao W, Hu P (2014) Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface. Adv Mater 26:6587–6593

    Article  Google Scholar 

  34. Chuang HJ, Chamlagain B, Koehler M et al (2016) Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett 16:1896

    Article  Google Scholar 

  35. Li H, Duan X, Wu X et al (2014) Growth of alloy MoS2xSe2(1−x) nanosheets with fully tunable chemical compositions and optical properties. J Am Chem Soc 136:3756–3759

    Article  Google Scholar 

  36. Dai T, Fan X, Ren Y et al (2018) Layer-controlled synthesis of wafer-scale MoSe2 nanosheets for photodetector arrays. J Mater Sci 53:8436–8444

    Article  Google Scholar 

  37. Li Y, Wang F, Tang D et al (2018) Controlled synthesis of highly crystalline CVD-derived monolayer MoSe2 and shape evolution mechanism. Mater Lett 216:261–264

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFB0405600), Natural Science Foundation of Tianjin City (Grant Nos. 18JCZDJC30500, 17JCYBJC16100, and 17JCZDJC31700), and National Natural Science Foundation of China (Grant Nos. 61404091, 61274113, 61505144, 51502203, and 51502204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Kailiang Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, D., Wang, F., Zhang, B. et al. Field effect properties of single-layer MoS2(1−x)Se2x nanosheets produced by a one-step CVD process. J Mater Sci 53, 14447–14455 (2018). https://doi.org/10.1007/s10853-018-2617-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2617-5

Keywords

Navigation