Skip to main content
Log in

Adsorption of residual gas molecules on (10–10) surfaces of pristine and Zn-doped GaAs nanowires

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Using first-principles calculations, the effects of residual gas molecules (H2O, CO, CO2, H2 and N2) adsorption on the photoelectric properties of pristine and Zn-doped GaAs nanowire surfaces are investigated. Total energy calculations show that p-type doping surface is beneficial to reduce the damage of residual gases to cathodes and improve the stability of GaAs nanowire photocathodes. After adsorption of gas molecules, the electrons are transferred from surface to adsorbates, leading to a dipole moment pointing from surface to residual gas molecules, which obstructs the escape of electrons and increases the work function of photocathodes. Through Zn doping, the charge transfer between gas molecules and nanowire surface is reduced and the force of dipole moment induced by gas molecules is weakened. Besides, the conduction energy bands shift toward higher energy region and the band gap increased after adsorption of residual gas molecules. Moreover, residual gas adsorption will weaken the absorption characteristic of GaAs nanowire photocathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. van der Weide J, Zhang Z, Baumann PK, Wensell MG, Bernholc J, Nemanich RJ (1994) Negative-electron-affinity effects on the diamond (100) surface. Phys Rev B 50(8):5803–5806

    Article  Google Scholar 

  2. Escher JS, Schade H (1973) Calculated energy distributions of electrons emitted from negative electron affinity GaAs: Cs–O surfaces. J Appl Phys 44(12):5309–5313

    Article  Google Scholar 

  3. Levine JD (1973) Structural and electronic model of negative electron affinity on the Si/Cs/O surface. Surf Sci 34(1):90–107

    Article  Google Scholar 

  4. Gao H (1987) Investigation of the mechanism of the activation of GaAs negative electron affinity photocathodes. J Vac Sci Technol, A 5(4):1295–1298

    Article  Google Scholar 

  5. Ciccacci F, Chiaia G (1991) Comparative study of the preparation of negative electron affinity GaAs photocathodes with O2 and with NF3. J Vac Sci Technol, A 9(6):2991–2995

    Article  Google Scholar 

  6. Liu Z, Sun Y, Peterson S, Pianette P (2008) Photoemission study of Cs–NF3 activated GaAs(100) negative electron affinity photocathodes. Appl Phys Lett 92:241107-1–241107-3

    Google Scholar 

  7. Zou J, Yang Z, Qiao J, Gao P, Chang B (2007) Activation experiments and quantum efficiency theory on gradient-doping NEA GaAs photocathodes. Proc SPIE 6782:1–8

    Google Scholar 

  8. Vergara G, Gómez LJ, Capmany J, Montojo MT (1997) Influence of the dopant concentration on the photoemission in NEA GaAs photocathodes. Vacuum 48(2):155–160

    Article  Google Scholar 

  9. Wen L, Zhao Z, Li X, Shen Y, Guo H, Wang Y (2011) Theoretical analysis and modeling of light trapping in high efficiency GaAs nanowire array solar cells. Appl Phys Lett 99(14):143116-143116-3

    Article  Google Scholar 

  10. Gutsche C, Niepelt R, Gnauck M, Lysov A, Prost W, Ronning C (2012) Direct determination of minority carrier diffusion lengths at axial GaAs nanowire p–n junctions. Nano Lett 12(3):1453–1458

    Article  Google Scholar 

  11. Diao Y, Liu L, Xia S, Feng S (2018) Early stages of Cs adsorption mechanism for GaAs nanowire surface. Appl Surf Sci 434:950–956

    Article  Google Scholar 

  12. Durek D, Frommberger F, Reichelt T, Westermann M (1999) Degradation of a gallium-arsenide photoemitting NEA surface by water vapour. Appl Surf Sci 143:319–322

    Article  Google Scholar 

  13. Wada T, Nitta T, Nomura T, Miyao M, Hagino M (1990) Influence of exposure to CO, CO2 and H2O on the stability of GaAs photocathodes. Jpn J Appl Phys 29(10):2087–2091

    Article  Google Scholar 

  14. Sen P, Pickard DS, Schneider JE, McCord MA, Pease RF, Baum AW, Costello KA (1998) Lifetime and reliability results for a negative electron affinity photocathode in a demountable vacuum system. J Vac Sci Technol, B 16(6):3380–3384

    Article  Google Scholar 

  15. Yee EM, Jackson DA (1972) Photoyield decay characteristics of a cesiated GaAs. Solid State Electron 15:245–247

    Article  Google Scholar 

  16. Tang FC, Lubell MS, Rubin K, Vasiakis A (1986) Operating experience with a GaAs photoemission electron source. Rev Sci Instrum 57(12):3004–3011

    Article  Google Scholar 

  17. Rodway DC, Allenson MB (1986) In situ surface study of the activating layer on GaAs (Cs, O) photocathodes. J Phys D Appl Phys 19:1353–1371

    Article  Google Scholar 

  18. Machuca F, Liu Z, Sun Y, Pianetta P, Spicer WE, Pearse RFW (2002) Role of oxygen in semiconductor negative electron affinity photocathodes. J Vac Sci Technol, B 20(6):2721–2725

    Article  Google Scholar 

  19. Machuca F, Liu Z, Sun Y, Pianetta P, Spicer WE, Pease RFW (2003) Oxygen species in Cs/O activated gallium nitride (GaN) negative electron affinity photocathodes. J Vac Sci Technol, B 21(4):1863–1869

    Article  Google Scholar 

  20. Calabres R, Guidi V, Lenisa P et al (1994) Surface analysis of a GaAs electron source using Rutherford backscattering spectroscopy. Appl Phys Lett 65(3):301–302

    Article  Google Scholar 

  21. Calabres R, Ciullo G, Guidi V, Lamanna G, Lenisa P, Maciga B, Tecchio L, Yang B (1994) Long-lifetime high-intensity GaAs photosource. Rev Sci Instrum 65(2):343–348

    Article  Google Scholar 

  22. Ghaderi N, Peressi M, Binggeli N, Akbarzadeh H (2010) Structural properties and energetics of intrinsic and Si-doped GaAs nanowires: first-principles pseudopotential calculations. Phys Rev B 81(81):2149

    Google Scholar 

  23. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MIJ, Refson K, Pavne MC (2005) First principles methods using CASTEP. Z Kristallographie 220(5/6):567–570

    Google Scholar 

  24. Hammer B (1999) Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys Rev B 59(11):7413–7421

    Article  Google Scholar 

  25. Zou J, Chang B, Yang Z, Zhang Y, Qiao J (2009) Evolution of surface potential barrier for negative-electron-affinity GaAs photocathodes. J Appl Phys 105(1):013714-013714-6

    Article  Google Scholar 

  26. Shen Y, Chen L, Qian YS, Dong YY, Zhang SQ, Wang MS (2015) Research on Cs activation mechanism for Ga0.5Al0.5As(001) and GaN(0001) surface. Appl Surf Sci 324:300–303

    Article  Google Scholar 

  27. Li W, Stampfl C, Scheffler M (2002) Oxygen adsorption on Ag (111): a density-functional theory investigation. Phys Rev B 65:075407-1–075407-19

    Google Scholar 

  28. Zhang Y, Xie Z, Deng Y, Yu X (2015) Impurity distribution and ferromagnetism in Mn-doped GaAs nanowires: a first-principle study. Phys Lett A 379(42):2745–2749

    Article  Google Scholar 

  29. Liu Y, Moll JL, Spicer WE (1970) Quantum yield of GaAs semireansparent photocathode. Appl Phys Lett 17:60–62

    Article  Google Scholar 

  30. James LW, Moll JL (1969) Transport properties of GaAs obtained from photoemission measurements. Phys Rev 183:740–753

    Article  Google Scholar 

  31. Xia S, Liu L, Diao Y, Feng S (2017) Doping process of p-type GaN nanowires: a first principle study. J Appl Phys 122(13):135102-1–135102-8

    Article  Google Scholar 

  32. Spicer WE (1958) Photoemissive, photoconductive, and absorption studies of alkali-antimony compounds. Phys Rev 112(1):114–122

    Article  Google Scholar 

  33. Spicer WE, Herrera-Gómez A (1993) Modern theory and application of photocathodes. Proc SPIE 2022:18–33

    Article  Google Scholar 

  34. Cui Z, Ke X, Li E, Liu T (2016) Electronic and optical properties of titanium-doped GaN nanowires. Mater Des 96:409–415

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially sponsored by the Fundamental Research Funds for the Central Universities under Grant No. 30916011206, the Six Talent Peaks Project in Jiangsu Province under Grant No. 2015-XCL-008 and the Qing Lan Project of Jiangsu Province under Grant No. 2017-AD41779. The authors are also indebted to Meishang Wang of Ludong University for providing the CASTEP software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diao, Y., Liu, L. & Xia, S. Adsorption of residual gas molecules on (10–10) surfaces of pristine and Zn-doped GaAs nanowires. J Mater Sci 53, 14435–14446 (2018). https://doi.org/10.1007/s10853-018-2610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2610-z

Keywords

Navigation