Skip to main content
Log in

Probing the interplay between reversibility and magnetostatic interactions within arrays of multisegmented nanowires

  • Metals
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ordered arrays of NiFe/Cu multisegmented nanowires (NWs) are fabricated by ac pulse electrodeposition method into the 25-µm thick anodic aluminum oxide templates with a pore diameter of about 40–100 nm inter-pore distance. The behavior of magnetostatic interactions between neighboring NiFe/Cu NWs as well between magnetic segments of the same wire related to the NW length and the magnetic segment thickness is presented. The first-order reversal curves (FORCs) results for two given magnetic shape anisotropies, a nearly disk-shaped and a rod-shaped one, reveal a single domain magnetic state along with a constant peak value of FORC coercivity distribution (H FORC c ). However, the Major Hysteresis Loop coercivity (H MHL c ) shows a significant reduction with an increase in length. In addition, the magnetostatic interaction distribution along the Hu axis of FORC diagrams shows a weakly decreasing behavior, in disagreement with existing phenomenological model. In order to resolve this contradiction, the reversible and irreversible components of magnetization were measured. For arrays of multisegmented NWs, the contribution of the reversible components of magnetization rises up to about 70% as NW’s length increases which is in contrast for arrays of uniform NWs where a nearly zero reversibility is reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  1. Núñez A, Pérez L, Abuín M, Araujo J, Proenca M (2017) Magnetic behaviour of multisegmented FeCoCu/Cu electrodeposited nanowires. J Phys D 50:155003

    Article  Google Scholar 

  2. Sergelius P, Lee JH, Fruchart O, Salem MS, Allende S, Escobar RA, Gooth J, Zierold R, Toussaint J-C, Schneider S (2017) Intra-wire coupling in segmented Ni/Cu nanowires deposited by electrodeposition. Nanotechnology 28:065709

    Article  Google Scholar 

  3. Philip S, Javier Garcia F, Stefan M, Michael Z, Tim B, Victor Vega M, de la Victor Manuel P, Detlef G, Kornelius N (2016) Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study. J Phys D 49:145005

    Article  Google Scholar 

  4. Béron F, Carignan L-P, Menard D, Yelon A (2008) Magnetic behavior of Ni/Cu multilayer nanowire arrays studied by first-order reversal curve diagrams. IEEE Trans Magn 44:2745–2748

    Article  Google Scholar 

  5. Susano M, Proenca MP, Moraes S, Sousa CT, Araújo JP (2016) Tuning the magnetic properties of multisegmented Ni/Cu electrodeposited nanowires with controllable Ni lengths. Nanotechnology 27:335301

    Article  Google Scholar 

  6. Krimpalis S, Dragos O-G, Moga A-E, Lupu N, Chiriac H (2011) Magnetization processes in electrodeposited NiFe/Cu multilayered nanowires. J Mater Res 26:1081–1090

    Article  Google Scholar 

  7. Wong J, Greene P, Dumas RK, Liu K (2009) Probing magnetic configurations in Co/Cu multilayered nanowires. Appl Phys Lett 94:032504

    Article  Google Scholar 

  8. Sousa CT, Leitao DC, Proenca MP, Ventura J, Pereira AM, Araujo JP (2014) Nanoporous alumina as templates for multifunctional applications. Appl Phys Rev 1:031102

    Article  Google Scholar 

  9. Ramazani A, Ghaffari M, Kashi MA, Kheiry F, Eghbal F (2014) A new approach to fabricating magnetic multilayer nanowires by modifying the ac pulse electrodeposition in a single bath. J Phys D 47:355003

    Article  Google Scholar 

  10. Rando E, Allende S (2015) Magnetic reversal modes in multisegmented nanowire arrays with long aspect ratio. J Appl Phys 118:013905

    Article  Google Scholar 

  11. Cisternas E, Vogel EE (2015) Improving information storage by means of segmented magnetic nanowires. J Magn Magn Mater 388:35–39

    Article  Google Scholar 

  12. Gilbert DA, Zimanyi GT, Dumas RK, Winklhofer M, Gomez A, Eibagi N, Vicent J, Liu K (2014) Quantitative decoding of interactions in tunable nanomagnet arrays using first order reversal curves. Sci Rep 4:4204

    Article  Google Scholar 

  13. Liu F, Hou Y, Gao S (2014) Exchange-coupled nanocomposites: chemical synthesis, characterization and applications. Chem Soc Rev 43:8098–8113

    Article  Google Scholar 

  14. Elbaile L, Cubero IG, Crespo RD, Vega V, García JA (2012) Magnetic behavior in arrays of Ni79Fe21 and Ni79Fe21/Cu nanowires. J Alloys Compd 536:S359–S364

    Article  Google Scholar 

  15. Krimpalis S, Lupu N, Chiriac H (2011) Mechanism of magnetization reversal in arrays of multilayered nanowires. IEEE Trans Magn 47:4534–4541

    Article  Google Scholar 

  16. Palmero EM, Béron F, Bran C, del Real RP, Vázquez M (2016) Magnetic interactions in compositionally modulated nanowire arrays. Nanotechnology 27:435705

    Article  Google Scholar 

  17. Chen M, Chien C-L, Searson PC (2006) Potential modulated multilayer deposition of multisegment Cu/Ni nanowires with tunable magnetic properties. Chem Mater 18:1595–1601

    Article  Google Scholar 

  18. De La Torre Medina J, Darques M, Blon T, Piraux L, Encinas A (2008) Effects of layering on the magnetostatic interactions in microstructures of CoxCu1-x/Cu nanowires. Phys Rev B 77:014417

    Article  Google Scholar 

  19. Clime L, Zhao S, Chen P, Normandin F, Roberge H, Veres T (2007) The interaction field in arrays of ferromagnetic barcode nanowires. Nanotechnology 18:435709

    Article  Google Scholar 

  20. Pike CR, Roberts AP, Verosub KL (1999) Characterizing interactions in fine magnetic particle systems using first order reversal curves. J Appl Phys 85:6660–6667

    Article  Google Scholar 

  21. Egli R, Chen AP, Winklhofer M, Kodama KP, Horng C-S (2010) Detection of noninteracting single domain particles using first-order reversal curve diagrams. Geochem Geophys Geosyst 11:Q01Z11

    Article  Google Scholar 

  22. Ramazani A, Asgari V, Montazer A, Kashi MA (2015) Tuning magnetic fingerprints of FeNi nanowire arrays by varying length and diameter. Curr Appl Phys 15:819–828

    Article  Google Scholar 

  23. Winklhofer M, Dumas RK, Liu K (2008) Identifying reversible and irreversible magnetization changes in prototype patterned media using first-and second-order reversal curves. J Appl Phys 103:07C518

    Article  Google Scholar 

  24. Béron F, Carignan L-P, Ménard D, Yelon A (2010) Extracting individual properties from global behaviour: first-order reversal curve method applied to magnetic nanowire arrays. In: Electrodeposited nanowires and their applications. InTech

  25. Kumari M, Widdrat M, Tompa É, Uebe R, Schüler D, Pósfai M, Faivre D, Hirt AM (2014) Distinguishing magnetic particle size of iron oxide nanoparticles with first-order reversal curves. J Appl Phys 116:124304

    Article  Google Scholar 

  26. Kashi MA, Ramazani A (2005) The effect of temperature and concentration on the self-organized pore formation in anodic alumina. J Phys D 38:2396

    Article  Google Scholar 

  27. Montazer A, Ramazani A, Kashi MA, Zavašnik J (2016) Angular-dependent magnetism in Co (001) single-crystal nanowires: capturing the vortex nucleation fields. J Mater Chem C 4:10664–10674

    Article  Google Scholar 

  28. Zaraska L, Sulka GD, Jaskuła M (2011) Anodic alumina membranes with defined pore diameters and thicknesses obtained by adjusting the anodizing duration and pore opening/widening time. J Solid State Electrochem 15:2427–2436

    Article  Google Scholar 

  29. Arefpour M, Kashi MA, Ramazani A, Montazer A (2016) Electrochemical pore filling strategy for controlled growth of magnetic and metallic nanowire arrays with large area uniformity. Nanotechnology 27:275605

    Article  Google Scholar 

  30. Vivas LG, Vazquez M, Escrig J, Allende S, Altbir D, Leitao DC, Araujo JP (2012) Magnetic anisotropy in CoNi nanowire arrays: analytical calculations and experiments. Phys Rev B 85:035439

    Article  Google Scholar 

  31. Pike CR (2003) First-order reversal-curve diagrams and reversible magnetization. Phys Rev B 68:104424

    Article  Google Scholar 

  32. Davies JE, Hellwig O, Fullerton EE, Winklhofer M, Shull RD, Liu K (2009) Frustration driven stripe domain formation in Co/Pt multilayer films. Appl Phys Lett 95:022505

    Article  Google Scholar 

  33. Béron F, Clime L, Ciureanu M, Ménard D, Cochrane RW, Yelon A (2007) Reversible and quasireversible information in first-order reversal curve diagrams. J Appl Phys 101:09J107

    Article  Google Scholar 

  34. Alikhani M, Ramazani A, Almasi Kashi M, Samanifar S, Montazer AH (2016) Irreversible evolution of angular-dependent coercivity in Fe80Ni20 nanowire arrays: detection of a single vortex state. J Magn Magn Mater 414:158–167

    Article  Google Scholar 

  35. Ali G, Maqbool M (2013) Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition. Nanoscale Res Lett 8:352

    Article  Google Scholar 

  36. Rheem Y, Yoo B, Koo BK, Myung NV (2007) Electrochemical synthesis of compositionally modulated NiFe nanowires. Phys Status Solidi A 204:4021–4024

    Article  Google Scholar 

  37. Tehrani AS, Kashi MA, Ramazani A, Montazer A (2016) Axially adjustable magnetic properties in arrays of multilayered Ni/Cu nanowires with variable segment sizes. Superlattices Microstruct 95:38–47

    Article  Google Scholar 

  38. Almasi-Kashi M, Ramazani A, Kheyri F, Jafari-Khamse E (2014) The effect of magnetic layer thickness on magnetic properties of Fe/Cu multilayer nanowires. Mater Chem Phys 144:230–234

    Article  Google Scholar 

  39. Carignan L-P, Lacroix C, Ouimet A, Ciureanu M, Yelon A, Ménard D (2007) Magnetic anisotropy in arrays of Ni, CoFeB, and Ni/Cu nanowires. J Appl Phys 102:023905

    Article  Google Scholar 

  40. Béron F, Clime L, Ciureanu M, Ménard D, Cochrane R, Yelon A (2008) Magnetostatic interactions and coercivities of ferromagnetic soft nanowires in uniform length arrays. J Nanosci Nanotechnol 8:2944–2954

    Article  Google Scholar 

  41. Clime L, Béron F, Ciureanu P, Ciureanu M, Cochrane R, Yelon A (2006) Characterization of individual ferromagnetic nanowires by in-plane magnetic measurements of arrays. J Magn Magn Mater 299:487–491

    Article  Google Scholar 

  42. Samanifar S, Almasi Kashi M, Ramazani A, Alikhani M (2015) Reversal modes in FeCoNi nanowire arrays: correlation between magnetostatic interactions and nanowires length. J Magn Magn Mater 378:73–83

    Article  Google Scholar 

  43. Bearon F, Clime L, Ciureanu M, Menard D, Cochrane RW, Yelon A (2006) First-order reversal curves diagrams of ferromagnetic soft nanowire arrays. IEEE Trans Magn 42:3060–3062

    Article  Google Scholar 

  44. Proenca M, Sousa C, Escrig J, Ventura J, Vazquez M, Araujo J (2013) Magnetic interactions and reversal mechanisms in Co nanowire and nanotube arrays. J Appl Phys 113:093907

    Article  Google Scholar 

  45. Bodale I, Stancu A (2013) Reversible magnetization processes evaluation using high-order magnetization curves. IEEE Trans Magn 49:4960–4964

    Article  Google Scholar 

  46. Sun L, Hao Y, Chien C-L, Searson PC (2005) Tuning the properties of magnetic nanowires. IBM J Res Dev 49:79–102

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge University of Kashan for providing financial support of this work by Grant No. (159023/45).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shojaie Mehr.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shojaie Mehr, S., Ramezani, A., Almasi Kashi, M. et al. Probing the interplay between reversibility and magnetostatic interactions within arrays of multisegmented nanowires. J Mater Sci 53, 14629–14644 (2018). https://doi.org/10.1007/s10853-018-2590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2590-z

Keywords

Navigation