Skip to main content
Log in

Synthesis of hierarchical titanium silicalite-1 in the presence of polyquaternium-7 and its application in the hydroxylation of phenol

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hierarchical titanium silicalite-1 (TS-1) without generated anatase TiO2 species was synthesized in the presence of polyquaternium-7 (M550) by one-step hydrothermal crystallization method and characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray fluorescence (XRF), Fourier transform infrared spectra, ultraviolet visible spectra, Raman spectroscopy and N2 adsorption–desorption measurements. The experimental results show that highly porous TS-1 crystals, with pores of ca. 2.6–4.9 nm diameter, are obtained under hydrothermal conditions by using polyquaternium-7 as the mesopore-directing agent. The polyquaternium-7 has a great influence on both the textural properties and the coordination of Ti species in the framework of TS-1. The catalytic properties and recyclability of the prepared mesoporous TS-1 for hydroxylation of phenol with H2O2 have been evaluated, and their activity has been compared with those of TS-1 with only micropores. The great catalytic activity, selectivity and stability of the hierarchical TS-1 as well as the cheap price and environmental-friendly nature of the used mesopore-directing agent allow to consider this hierarchical TS-1 as a promising catalyst for industry application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Kannan S, Dubey A, Knozinger H (2005) Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. J Catal 231(2):381–392

    Article  Google Scholar 

  2. Shi F, Zheng J, Xu K, Zhang L, Hu J (2012) Synthesis of binary Cu-Pd-alginates dry bead and its high catalytic activity for hydroxylation of phenol. Catal Commun 28(28):23–26

    Article  Google Scholar 

  3. Pamin K, Połtowicz J, Prończuk M, Basąg S, Maciejewska J, Kryściak-Czerwenka J, Tokarz-Sobieraj R (2015) Hydroxylation of phenol by hydrogen peroxide catalyzed by heteropoly compounds in presence of glycerol as green solvent. Catal Today 257:80–85

    Article  Google Scholar 

  4. Shi F, Mu L, Yu P, Hu J, Zhang L (2014) Liquid-phase catalytic hydroxylation of phenol using metal crosslinked alginate catalysts with hydrogen peroxide as an oxidant. J Mol Catal A-Chem 391(1):66–73

    Article  Google Scholar 

  5. Shi F, Chen Y, Sun L, Zhang L, Hu J (2012) Hydroxylation of phenol catalyzed by different forms of Cu-alginate with hydrogen peroxide as an oxidant. Catal Commun 25(25):102–105

    Article  Google Scholar 

  6. Ok DY, Jiang N, Prasetyanto EA, Jin H, Park SE (2011) Epoxidation of cyclic-olefins over carbon template mesoporous TS-1. Micropor Mesopor Mater 141(1):2–7

    Article  Google Scholar 

  7. Thangaraj A, Kumar R, Ratnasamy P (1992) Catalytic properties of titanium silicalites: IV. Vapour phase beckmann rearrangement of cyclohexanone oxime. J Catal 137(1):252–256

    Article  Google Scholar 

  8. Tuel A, Moussa-Khouzami S, Taarit YB, Naccache C (1991) Hydroxylation of phenol over TS-1: Surface and solvent effects. J Mol Catal 68(1):45–52

    Article  Google Scholar 

  9. Yang X, Chen L, Li Y, Joanna CR, Clément S, Su B (2017) Hierarchically porous materials: synthesis strategies and structure design. Chem Soc Rev 46(2):481–558

    Article  Google Scholar 

  10. Kresge CT, Leonowicz LE, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359(6397):710–712

    Article  Google Scholar 

  11. Blasco T, Corma A, Navarro MT, Pariente JP (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156(3):65–74

    Article  Google Scholar 

  12. Zhang G, Long J, Wang X, Zhang Z, Dai W, Liu P, Li Z, Wu L, Fu X (2010) Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation. Langmuir 26(2):1362–1371

    Article  Google Scholar 

  13. Yuan ZY, Liu SQ, Chen TH, Wang JZ, Lia HX (1995) Synthesis of iron-containing MCM-41. J Chem Soc Chem Commun 9(9):973–974

    Article  Google Scholar 

  14. Sayari A, Han BH, Yang Y (2004) Simple synthesis route to monodispersed SBA-15 silica rods. J Am Chem Soc 126(44):14348–14349

    Article  Google Scholar 

  15. Na K, Choi M, Ryoo R (2013) Recent advances in the synthesis of hierarchically nanoporous zeolites. Micropor Mesopor Mater 166(2):3–19

    Article  Google Scholar 

  16. Möller K, Bein T (2013) Mesoporosity-a new dimension for zeolites. Chem Soc Rev 42(9):3689–3707

    Article  Google Scholar 

  17. Qin Z, Shen B, Gao X, Lin F, Wang B, Xu C (2011) Mesoporous Y zeolite with homogeneous aluminum distribution obtained by sequential desilication-dealumination and its performance in the catalytic cracking of cumene and 1,3,5-triisopropylbenzene. J Catal 278(2):266–275

    Article  Google Scholar 

  18. Xiong G, Li C, Li HY, Xin Q, Feng ZC (2000) Direct spectroscopic evidence for vanadium species in V-MCM-41 molecular sieve characterized by UV resonance Raman spectroscopy. Chem Commun 8(8):677–678

    Article  Google Scholar 

  19. Luan ZH, Meloni PA, Czernuszewicz RS, Kevan L (1997) Raman Spectroscopy of Vanadium Oxide Species Immobilized at Surface Titanium Centers of Mesoporous Titanosilicate TiMCM-41 Molecular Sieves. J. Phys. Chem. B 101(44):9046

    Article  Google Scholar 

  20. Jacobsen CJH, Madsen C, Houzvicka J, Schmidt I, Carlsson A (2000) Mesoporous Zeolite Single Crystals. J Am Chem Soc 122(29):7116–7117

    Article  Google Scholar 

  21. Schmidt I, Boisen A, Gustavsson E, Ståhl K, Pehrson S, Dahl S, Carlsson A, Jacobsen CJH (2001) Carbon Nanotube Templated Growth of Mesoporous Zeolite Single Crystals. Chem Mater 13(12):4416–4418

    Article  Google Scholar 

  22. Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger RJ, Chmelka BF, Ryoo R (2011) Directing zeolite structures into hierarchically nanoporous architectures. Science 333(6040):328

    Article  Google Scholar 

  23. Jin Y, Li Y, Zhao S, Lv Z, Wang Q, Liu X, Wang L (2012) Synthesis of mesoporous MOR materials by varying temperature crystallizations and combining ternary organic templates. Micropor. Mesopor. Mater 147(1):259–266

    Article  Google Scholar 

  24. Xiao FS, Wang LF, Yin CY, Lin KF, Di Y, Li JX, Xu RR, Su DS, Schlogl R, Yokoi T, Tatsumi T (2006) Catalytic Properties of Hierarchical Mesoporous Zeolites Templated with a Mixture of Small Organic Ammonium Salts and Mesoscale Cationic Polymers. Angew Chem 45(19):3090–3093

    Article  Google Scholar 

  25. Tao Y, Kanoh H, Kaneko K (2005) Synthesis of mesoporous zeolite A by resorcinol − formaldehyde aerogel templating. Langmuir 21(2):504–507

    Article  Google Scholar 

  26. Wang L, Yin C, Shan Z, Liu S, Du Y, Xiao FS (2009) Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids Surf A 340(1):126–130

    Article  Google Scholar 

  27. Zhang B, Davis SA, Mendelson NH, Mann S (2000) Bacterial templating of zeolite fibres with hierarchical structure. Chem Commun 9(9):781–782

    Article  Google Scholar 

  28. Dong A, Wang Y, Tang Y, Ren N, Zhang Y, Yue Y, Gao Z (2002) Zeolitic tissue through wood cell templating. Adv Mater 14(12):926–929

    Article  Google Scholar 

  29. Koekkoek AJJ, Tempelman CHL, Degirmenci V, Guo M, Feng Z, Li C, Hensen EJM (2011) Hierarchical zeolites prepared by organosilane templating: a study of the synthesis mechanism and catalytic activity. Catal Today 168(1):96–111

    Article  Google Scholar 

  30. Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5(9):718–723

    Article  Google Scholar 

  31. Ogura M, Shinomiya SY, Tateno J, Nara Y, Kikuchi E, Matsukata M (2000) Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution. Chem Lett 31(50):882–883

    Article  Google Scholar 

  32. Zhu J, Zhu YH, Lk Zhu, Rigutto M, Made AVD, Yang CG, Pan SX, Wang L, Zhu LF, Jin YY, Sun Q, Wu QM, Meng XJ, Zhang DL, Han Y, Li JX, Chu YY, Zheng AM, Qiu SL, Zheng XM, Xiao FS (2014) Highly Mesoporous Single-Crystalline Zeolite Beta Synthesized Using a Nonsurfactant Cationic Polymer as a Dual-Function Template. J Am Chem Soc 136(6):2503–2510

    Article  Google Scholar 

  33. Du ST, Sun QM, Wang N, Chen XX, Jia MJ, Yu JH (2017) Synthesis of hierarchical TS-1 zeolites with abundant and uniform intracrystalline mesopores and their highly efficient catalytic performance for oxidation desulfurization. J. Mater. Chem. A 5(17):7992

    Article  Google Scholar 

  34. Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 40(47):246–249

    Article  Google Scholar 

  35. Olson DH, Kokotailo GT, Lawton SL, Meier WM (1981) Crystal structure and structure-related properties of ZSM-5. J Phys Chem 85(15):2238–2243

    Article  Google Scholar 

  36. Xiong G, Jia Q, Cao Y, Liu L, Guo Z (2017) The effect of acid treatment on the active sites and reaction intermediates of the low-cost TS-1 in propylene epoxidation. RSC Adv 7(39):24046–24054

    Article  Google Scholar 

  37. Wang W, Li G, Li W, Liu L (2011) Synthesis of hierarchical TS-1 by caramel templating. Chem Commun 47(12):3529–3531

    Article  Google Scholar 

  38. Coudurier G, Naccache C, Vedrine JC (1982) Uses of ir spectroscopy in identifying ZSM zeolite structure. J Chem Soc, Chem Commun 24(24):1413–1415

    Article  Google Scholar 

  39. Tozzola G, Mantegazza MA, Ranghino G, Petrini G, Bordiga S, Ricchiardi G, Lamberti C, Zulian R, Zecchina A (1998) On the structure of the active site of Ti-silicalite in reactions with hydrogen peroxide: a vibrational and computational study. J Catal 179(1):64–71

    Article  Google Scholar 

  40. Bordiga S, Damin A, Berlier G, Bonino F, Ricchiardi G, Zecchina A, Lamberti C (2001) The role of isolated sites in heterogeneous catalysis: characterization and modelling. Int J Mol Sci 2(5):167–182

    Article  Google Scholar 

  41. Kumar P, Gupta JK, Muralidhar G, Rao TSR (1998) Acidity studies on titanium silicalites-1 (TS-1) by ammonia adsorption using microcalorimetry. Stud Surf Sci Catal 113(98):463–472

    Article  Google Scholar 

  42. Xue T, Liu H, Wang Y, Wu H, Wu P, He M (2015) Seed-induced synthesis of small-crystal TS-1 using ammonia as alkali source. Chin J Catal 36(11):1928–1935

    Article  Google Scholar 

  43. Zuo Y, Zhang T, Liu M, Ji Y, Song C, Guo X (2018) Mesoporous/Microporous Titanium Silicalite with Controllable Pore Diameter for Cyclohexene Epoxidation. Ind Eng Chem Res 57(2):512

    Article  Google Scholar 

  44. Du S, Li F, Sun Q, Wang N, Jia M, Yu J (2016) A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chem Commun 52(16):3368–3371

    Article  Google Scholar 

  45. Liu Z, Davis RJ (1994) Investigation of the structure of microporous Ti-Si mixed oxides by X-ray, UV reflectance, FT-Raman, and FT-IR spectroscopies. J Phys Chem 98(4):1253–1261

    Article  Google Scholar 

  46. Khouw CB, Dartt CB, Labinger JA, Davis M (1994) Studies on the catalytic-oxidation of alkanes and alkenes by titanium silicates. J Catal 149(1):195–205

    Article  Google Scholar 

  47. Guo Q, Feng Z, Li G, Fan F, Li C (2013) Finding the “Missing Components” during the synthesis of TS-1 zeolite by UV resonance Raman spectroscopy. J Phys Chem C 117(6):2844–2848

    Article  Google Scholar 

  48. Su J, Xiong G, Zhou J, Liu W, Zhou D, Wang G, Wang X, Guo H (2012) Amorphous Ti species in titanium silicalite-1: structural features, chemical properties, and inactivation with sulfosalt. J Catal 288(4):1–7

    Article  Google Scholar 

  49. Astorino E, Peri JB, Willey RJ, Busca G (1995) Spectroscopic Characterization of Silicalite-1 and Titanium Silicalite-1. J Catal 157(2):482–500

    Article  Google Scholar 

  50. Zecchina A, Spoto G, Bordiga S, Ferrero A, Petrini G, Padovan M, Leofanti G (1991) Framework and extraframework Ti in Titanium-Silicalite: investigation by means of physical methods. Stud Surf Sci Catal 69:251–258

    Article  Google Scholar 

  51. Li C, Xiong G, Xin Q, Liu J, Ying P, Feng Z, Li J, Yang W, Wang Y, Wang G, Liu X, Lin M, Wang X, Min E (1999) UV Resonance Raman Spectroscopic Identification of Titanium Atoms in the Framework of TS-1 Zeolite. Angew Chem Int Ed 30(47):2220–2222

    Article  Google Scholar 

  52. Guo Q, Sun K, Feng Z, Li G, Guo M, Fan F, Li C (2012) A thorough investigation of the active titanium species in TS-1 zeolite by in situ UV resonance Raman spectroscopy. Chem Eur J 18(43):13854–13860

    Article  Google Scholar 

  53. Wang B, Lin M, Peng X, Zhu B, Shu X (2016) Hierarchical TS-1 synthesized effectively by post-modification with TPAOH and ammonium hydroxide. RSC Adv 6(51):44963–44971

    Article  Google Scholar 

  54. Wang Y, Lin M, Tuel A (2007) Hollow TS-1 crystals formed via a dissolution-recrystallization process. Micropor. Mesopor. Mater 102(1):80–85

    Article  Google Scholar 

Download references

Acknowledgements

We thank the funding from National Basic Research Program of China (973 Program) (Grant No: 2012CB720302).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fumin Wang or Xubin Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Z., Shen, Y., Wang, F. et al. Synthesis of hierarchical titanium silicalite-1 in the presence of polyquaternium-7 and its application in the hydroxylation of phenol. J Mater Sci 53, 12837–12849 (2018). https://doi.org/10.1007/s10853-018-2582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2582-z

Keywords

Navigation