Journal of Materials Science

, Volume 53, Issue 18, pp 13126–13142 | Cite as

A comparative study on the effect of different precursors for synthesis and efficient photocatalytic activity of g-C3N4/TiO2/bentonite nanocomposites

  • Amit Mishra
  • Akansha Mehta
  • Shagun Kainth
  • Soumen Basu
Energy materials


Graphitic carbon nitride (g-C3N4) was synthesized from three different precursors such as urea, thiourea and mixture of urea and thiourea containing each in the ratio 1:1. The variation in the thermal decomposition and condensation pathways of precursors led to the formation of g-C3N4 with different morphological and photophysical aspects. These were loaded upon TiO2/bentonite nanocomposite to make it visible active. The g-C3N4 synthesized from urea (UC3) was found to be highly influential sensitizer due to its thin and long nanosheet-like morphology, and the nanocomposite prepared by loading of g-C3N4 on TiO2/bentonite (UC3TB) effectively degraded about 85% of the reactive brilliant red-X3BS (RBR-X3BS) dye under visible light irradiation. The high activity was attributed due to the high surface area and pore volume of the nanocomposite along with effective charge separation.



Authors are thankful to DST (Grant No: SB/FT/CS-178/2013), New Delhi for fellowship as well as other financial assistance and BRNS (Grant No: 34/14/63/2014) for providing BET instrumental facilities.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this manuscript.

Supplementary material

10853_2018_2565_MOESM1_ESM.docx (3.5 mb)
Supporting Information: Supporting information contains; (i) UV–Visible diffuse reflectance spectra and tauc plot of TiO2/bentonite nanocomposite (ii) N2 adsorption–desorption isotherm and BJH plot of TiO2/bentonite and raw bentonite, (iii) HRTEM images of TiO2/bentonite nanocomposite with size distribution of TiO2, (iv) and (v) elemental mapping of UC3TB and TUC3TB nanocomposites and (vi) UV–Visible spectra of RBR-X3BS (40 ppm) during photocatalytic degradation at various time intervals. (DOCX 3548 kb)


  1. 1.
    Ökte AN, Tuncel D, Pekcan AH, Özden T (2014) J Chem Technol Biotechnol 89:1155CrossRefGoogle Scholar
  2. 2.
    Chen D, Zhu H, Wang X (2014) Appl Surf Sci 319:158CrossRefGoogle Scholar
  3. 3.
    Barbosa LV, Marçal L, Nassar EJ et al (2015) Catal Today 246:133CrossRefGoogle Scholar
  4. 4.
    Mishra A, Sharma M, Mehta A, Basu S (2017) J Nanosci Nanotechnol 17:1149CrossRefGoogle Scholar
  5. 5.
    Tahir M, Amin NS (2013) Appl Catal B 142:512CrossRefGoogle Scholar
  6. 6.
    Mehta A, Mishra A, Sharma M, Singh S, Basu S (2016) J Nanopart Res 18:209CrossRefGoogle Scholar
  7. 7.
    Mishra A, Mehta A, Sharma M, Basu S (2017) J Alloys Compd 694:574CrossRefGoogle Scholar
  8. 8.
    Zhang G, Ding X, Hu Y et al (2008) J Phys Chem C 112:17994CrossRefGoogle Scholar
  9. 9.
    Belver C, Bedia J, Rodríguez JJ (2017) J Hazard Mater 322:233CrossRefGoogle Scholar
  10. 10.
    Cheng Z-L, Sun W (2015) J Mater Eng Perform 24:4090CrossRefGoogle Scholar
  11. 11.
    Li J, Wang W (2009) Solid State Sci 11:2037CrossRefGoogle Scholar
  12. 12.
    Mishra A, Mehta A, Sharma M, Basu S (2017) J Environ Chem Eng 5:644CrossRefGoogle Scholar
  13. 13.
    Mishra A, Mehta A, Kainth S, Basu S (2018) Appl Clay Sci 153:144CrossRefGoogle Scholar
  14. 14.
    Li C, Zhou T, Zhu T, Li X (2015) RSC Adv 5:98482CrossRefGoogle Scholar
  15. 15.
    Li C, Wang J, Guo H, Ding S (2015) J Colloid Interface Sci 458:1CrossRefGoogle Scholar
  16. 16.
    Zhang J, Zhang L, Zhou S, Chen H, Zhao Y, Wang X (2014) Appl Clay Sci 90:135CrossRefGoogle Scholar
  17. 17.
    Chen D, Du Y, Zhu H, Deng Y (2014) Appl Clay Sci 87:285CrossRefGoogle Scholar
  18. 18.
    Sun Z, Li C, Yao G, Zheng S (2016) Mater Des 94:403CrossRefGoogle Scholar
  19. 19.
    Wen J, Xie J, Chen X, Li X (2017) Appl Surf Sci 391:72CrossRefGoogle Scholar
  20. 20.
    Y Zhang, Q Pan, G Chai, et al. (2013) Scientific reports 3Google Scholar
  21. 21.
    Iqbal W, Qiu B, Lei J, Wang L, Zhang J, Anpo M (2017) Dalton Trans 46:10678CrossRefGoogle Scholar
  22. 22.
    Cao S, Yu J (2014) J Phys Chem Lett 5:2101CrossRefGoogle Scholar
  23. 23.
    Li H, Wu X, Yin S, Katsumata K, Wang Y (2017) Appl Surf Sci 392:531CrossRefGoogle Scholar
  24. 24.
    Panneri S, Ganguly P, Nair BN, Mohamed AAP, Warrier KGK, Hareesh UNS (2017) Environ Sci Pollut Res 24:8609CrossRefGoogle Scholar
  25. 25.
    Zheng Y, Zhang Z, Li C (2017) J Photochem Photobiol A 332:32CrossRefGoogle Scholar
  26. 26.
    Dong F, Zhao Z, Xiong T et al (2013) ACS Appl Mater Interfaces 5:11392CrossRefGoogle Scholar
  27. 27.
    Zhou M, Hou Z, Zhang L, Liu Y, Gao Q, Chen X (2017) Sustain Energy Fuels 1:317CrossRefGoogle Scholar
  28. 28.
    Zhang J, Chen X, Takanabe K et al (2010) Angew Chem Int Ed 49:441CrossRefGoogle Scholar
  29. 29.
    Hong J, Xia X, Wang Y, Xu R (2012) J Mater Chem 22:15006CrossRefGoogle Scholar
  30. 30.
    Zhang J, Sun J, Maeda K et al (2011) Energy Environ Sci 4:675CrossRefGoogle Scholar
  31. 31.
    Zhang J, Zhang M, Zhang G, Wang X (2012) ACS Catalysis 2:940CrossRefGoogle Scholar
  32. 32.
    Zou H, Yan X, Ren J et al (2015) J Materiomics 1:340CrossRefGoogle Scholar
  33. 33.
    Xiong T, Cen W, Zhang Y, Dong F (2016) Acs Catal 6:2462CrossRefGoogle Scholar
  34. 34.
    Theerthagiri J, Senthil R, Priya A, Madhavan J, Michael R, Ashokkumar M (2014) RSC Adv 4:38222CrossRefGoogle Scholar
  35. 35.
    Jayaraman T, Raja SA, Priya A, Jagannathan M, Ashokkumar M (2015) New J Chem 39:1367CrossRefGoogle Scholar
  36. 36.
    Senthil R, Theerthagiri J, Selvi A, Madhavan J (2017) Opt Mater 64:533CrossRefGoogle Scholar
  37. 37.
    Lei J, Liu F, Wang L, Liu Y, Zhang J (2017) RSC Adv 7:27377CrossRefGoogle Scholar
  38. 38.
    Raziq F, Li C, Humayun M et al (2015) Mater Res Bull 70:494CrossRefGoogle Scholar
  39. 39.
    Ma S, Xue J, Zhou Y et al (2015) RSC Adv 5:64976CrossRefGoogle Scholar
  40. 40.
    Boonprakob N, Wetchakun N, Phanichphant S et al (2014) J Colloid Interface Sci 417:402CrossRefGoogle Scholar
  41. 41.
    Zhou L, Wang L, Lei J, Liu Y, Zhang J (2017) Catal Commun 89:125CrossRefGoogle Scholar
  42. 42.
    Christoforidis K, Melchionna M, Montini T et al (2016) RSC Advances 6:86617CrossRefGoogle Scholar
  43. 43.
    Li Y, Zhan J, Huang L et al (2014) RSC Adv 4:11831CrossRefGoogle Scholar
  44. 44.
    Li C, Sun Z, Zhang W, Yu C, Zheng S (2018) Appl Catal B 220:272CrossRefGoogle Scholar
  45. 45.
    Wang X, Blechert S, Antonietti M (2012) Acs Catal 2:1596CrossRefGoogle Scholar
  46. 46.
    Cao S, Low J, Yu J, Jaroniec M (2015) Adv Mater 27:2150CrossRefGoogle Scholar
  47. 47.
    Zhang G, Zhang J, Zhang M, Wang X (2012) J Mater Chem 22:8083CrossRefGoogle Scholar
  48. 48.
    Yan J, Wu G, Guan N, Li L, Li Z, Cao X (2013) Phys Chem Chem Phys 15:10978CrossRefGoogle Scholar
  49. 49.
    Rather RA, Singh S, Pal B (2017) Appl Catal B 213:9CrossRefGoogle Scholar
  50. 50.
    Wang Z, Xu Q, Meng T, Ren T, Chen D (2015) Energy Environ Focus 4:149CrossRefGoogle Scholar
  51. 51.
    Li H, Zhou L, Wang L, Liu Y, Lei J, Zhang J (2015) Phys Chem Chem Phys 17:17406CrossRefGoogle Scholar
  52. 52.
    Cao Y, Li Q, Wang W (2017) RSC Adv 7:6131CrossRefGoogle Scholar
  53. 53.
    Li Z, Jiang G, Zhang Z, Wu Y, Han Y (2016) J Mol Catal A: Chem 425:340CrossRefGoogle Scholar
  54. 54.
    Shen M, Henderson MA (2011) J Phys Chem Lett 2:2707CrossRefGoogle Scholar
  55. 55.
    Som S, Raha C, Chatterjee I (1983) Acta Vitaminol Enzymol 5:243Google Scholar
  56. 56.
    Zang M, Shi L, Liang L, Li D, Sun J (2015) RSC Adv 5:56136CrossRefGoogle Scholar
  57. 57.
    Li J, Liu Y, Li H, Chen C (2016) J Photochem Photobiol A 317:151CrossRefGoogle Scholar
  58. 58.
    Augugliaro V, Bellardita M, Loddo V, Palmisano G, Palmisano L, Yurdakal S (2012) J Photochem Photobiol, C 13:224CrossRefGoogle Scholar
  59. 59.
    Zhu B, Xia P, Ho W, Yu J (2015) Appl Surf Sci 344:188CrossRefGoogle Scholar
  60. 60.
    Ao Y, Xu J, Zhang S, Fu D (2010) Appl Surf Sci 256:2754CrossRefGoogle Scholar
  61. 61.
    Wang P, Ao Y, Wang C, Hou J, Qian J (2012) Carbon 50:5256CrossRefGoogle Scholar
  62. 62.
    Wang S, Gong Q, Zhu Y, Liang J (2009) Appl Surf Sci 255:8063CrossRefGoogle Scholar
  63. 63.
    Wang C, Zhu Q, Gu C, Luo X, Yu C, Wu M (2016) RSC Adv 6:85852CrossRefGoogle Scholar
  64. 64.
    Zhou L, Guo W, Xie G, Feng J (2013) Desalination Water Treat 51:6517CrossRefGoogle Scholar
  65. 65.
    Cao C, Xiao L, Liu L, Zhu H, Chen C, Gao L (2013) Appl Surf Sci 271:105CrossRefGoogle Scholar
  66. 66.
    Ao Y, Xu J, Fu D, Yuan C (2009) J Hazard Mater 167:413CrossRefGoogle Scholar
  67. 67.
    Xu J, Wu M, Chen M, Wang Z (2015) Powder Technol 281:167CrossRefGoogle Scholar
  68. 68.
    Ao Y, Xu J, Wang P et al (2015) Colloids Surf A 487:66CrossRefGoogle Scholar
  69. 69.
    Wang P, Tang H, Ao Y et al (2016) J Alloy Compd 688:1CrossRefGoogle Scholar
  70. 70.
    Yang W, Xiao X, Lu R et al (2016) RSC Adv 6:101242CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Amit Mishra
    • 1
  • Akansha Mehta
    • 1
  • Shagun Kainth
    • 1
  • Soumen Basu
    • 1
  1. 1.School of Chemistry and BiochemistryThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations