Journal of Materials Science

, Volume 53, Issue 18, pp 13111–13125 | Cite as

Vertically aligned MnO2 nanosheets coupled with carbon nanosheets derived from Mn-MOF nanosheets for supercapacitor electrodes

  • Kuangmin Zhao
  • Ziqin Xu
  • Zhen He
  • Guanying Ye
  • Qingmeng Gan
  • Zhi Zhou
  • Suqin Liu
Energy materials


A new approach to fabricate carbon nanosheets-supported MnO2 nanosheet arrays (MnO2/CNS) from Mn-MOF nanosheet-derived MnO/CNS through a facile low-temperature oxidation under a strong alkaline condition has been developed. This low-temperature approach to obtain the high-valence Mn species from low-valence Mn species avoids the oxidation of carbon during the conventional high-temperature synthesis. The as-prepared MnO2/CNS exhibits excellent electrochemical performance as an electrode material for supercapacitors with a maximum specific capacitance of 339 F g−1 at 0.5 A g−1 in 1 M Na2SO4 aqueous electrolyte. In addition, the MnO2/CNS displays ultrahigh stability with capacitance retention of 96.1% after 5000 charge–discharge cycles at a current density of 5 A g−1, which is superior than most of the previously reported MnO2/carbon materials. The excellent capacity and cycling stability of MnO2/CNS are mainly due to its large specific surface area and strong coupling between the in situ formed MnO2 nanosheet arrays and carbon nanosheets. This work provides a new low-temperature approach for the synthesis of high-valence metal oxides/carbon composites from MOF-derived materials for the applications such as energy storage and conversion.



This work was supported by the National Natural Science Foundation of China (Nos. 51372278, U1507106, and 51772332), the Hunan Provincial Science and Technology Plan Project (Nos. 2016TP1007 and 2017TP1001), Hunan Provincial Natural Science Foundation of China (No. 2018JJ2485), and Innovation-Driven Project of Central South University (No. 2016CXS031).


  1. 1.
    Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562CrossRefGoogle Scholar
  2. 2.
    Liu Z, Xing Y, Fang S, Qu X, Wu D, Zhang A, Xu B (2015) Low temperature self-assembled synthesis of hexagonal plate-shape Mn3O4 3D hierarchical architectures and their application in electrochemical capacitors. RSC Adv 5:54867–54872CrossRefGoogle Scholar
  3. 3.
    Yang M, Zhong Y, Zhou X, Ren J, Su L, Wei J, Zhou Z (2014) Ultrasmall MnO@N-rich carbon nanosheets for high-power asymmetric supercapacitors. J Mater Chem A 2:12519–12525CrossRefGoogle Scholar
  4. 4.
    Wei W, Cui X, Chen W, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721CrossRefGoogle Scholar
  5. 5.
    Liu M, Shi M, Lu W, Zhu D, Li L, Gan L (2017) Core–shell reduced graphene oxide/MnOx@carbon hollow nanospheres for high performance supercapacitor electrodes. Chem Eng J 313:518–526CrossRefGoogle Scholar
  6. 6.
    Ma W, Chen S, Yang S, Chen W, Cheng Y, Guo Y, Peng S, Ramakrishna S, Zhu M (2016) Hierarchical MnO2 nanowire/graphene hybrid fibers with excellent electrochemical performance for flexible solid-state supercapacitors. J Power Sources 306:481–488CrossRefGoogle Scholar
  7. 7.
    Gan Q, He H, Zhao K, He Z, Liu S (2018) Preparation of N-doped porous carbon coated MnO nanospheres through solvent-free in situ growth of ZIF-8 on ZnMn2O4 for high-performance lithium-ion battery anodes. Electrochim Acta 266:254–262CrossRefGoogle Scholar
  8. 8.
    Jin ZY, Lu AH, Xu YY, Zhang JT, Li WC (2014) Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv Mater 26:3700–3705CrossRefGoogle Scholar
  9. 9.
    Li Y, Xu Z, Wang D, Zhao J, Zhang H (2017) Snowflake-like core-shell α-MnO2@δ-MnO2 for high performance asymmetric supercapacitor. Electrochim Acta 251:344–354CrossRefGoogle Scholar
  10. 10.
    Li Y, Cao D, Wang Y, Yang S, Zhang D, Ye K, Cheng K, Yin J, Wang G, Xu Y (2015) Hydrothermal deposition of manganese dioxide nanosheets on electrodeposited graphene covered nickel foam as a high-performance electrode for supercapacitors. J Power Sources 279:138–145CrossRefGoogle Scholar
  11. 11.
    Bai Z, Li H, Li M, Li C, Wang X, Qu C, Yang B (2015) Flexible carbon nanotubes-MnO2/reduced graphene oxide-polyvinylidene fluoride films for supercapacitor electrodes. Int J Hydrog Energy 40:16306–16315CrossRefGoogle Scholar
  12. 12.
    Yang X, Niu H, Jiang H, Wang Q, Qu F (2016) A high energy density all-solid-state asymmetric supercapacitor based on MoS2/graphene nanosheets and MnO2/graphene hybrid electrodes. J Mater Chem A 4:11264–11275CrossRefGoogle Scholar
  13. 13.
    Ye Z, Li T, Ma G, Peng X, Zhao J (2017) Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J Power Sources 351:51–57CrossRefGoogle Scholar
  14. 14.
    Zhuang X, Mai Y, Wu D, Zhang F, Feng X (2015) Two-dimensional soft nanomaterials: a fascinating world of materials. Adv Mater 27:403–427CrossRefGoogle Scholar
  15. 15.
    Gao F, Qu J, Zhao Z, Zhou Q, Li B, Qiu J (2014) A green strategy for the synthesis of graphene supported Mn3O4 nanocomposites from graphitized coal and their supercapacitor application. Carbon 80:640–650CrossRefGoogle Scholar
  16. 16.
    Hao J, Zhong Y, Liao Y, Shu D, Kang Z, Zou X, He C, Guo S (2015) Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochim Acta 167:412–420CrossRefGoogle Scholar
  17. 17.
    Cheng H, Long L, Shu D, Wu J, Gong Y, He C, Kang Z, Zou X (2014) The supercapacitive behavior and excellent cycle stability of graphene/MnO2 composite prepared by an electrostatic self-assembly process. Int J Hydrog Energy 39:16151–16161CrossRefGoogle Scholar
  18. 18.
    Wu Y, Liu S, Zhao K, He Z, Yuan H, Lv K, Jia G (2016) Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors. Ionics 22:1185–1195CrossRefGoogle Scholar
  19. 19.
    Li S-L, Xu Q (2013) Metal–organic frameworks as platforms for clean energy. Energy Environ Sci 6:1656–1683CrossRefGoogle Scholar
  20. 20.
    Liu B, Shioyama H, Jiang H, Zhang X, Xu Q (2010) Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon 48:456–463CrossRefGoogle Scholar
  21. 21.
    Meng W, Chen W, Zhao L, Huang Y, Zhu M, Huang Y, Fu Y, Geng F, Yu J, Chen X, Zhi C (2014) Porous Fe3O4/carbon composite electrode material prepared from metal-organic framework template and effect of temperature on its capacitance. Nano Energy 8:133–140CrossRefGoogle Scholar
  22. 22.
    Zheng F, Yin Z, Xia H, Bai G, Zhang Y (2017) Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chem Eng J 327:474–480CrossRefGoogle Scholar
  23. 23.
    Liu D-S, Liu D-H, Hou B-H, Wang Y-Y, Guo J-Z, Ning Q-L, Wu X-L (2018) 1D porous MnO@N-doped carbon nanotubes with improved Li-storage properties as advanced anode material for lithium-ion batteries. Electrochim Acta 264:292–300CrossRefGoogle Scholar
  24. 24.
    Hu X, Lou X, Li C, Yang Q, Chen Q, Hu B (2018) Green and rational design of 3D layer-by-layer MnOx hierarchically mesoporous microcuboids from MOF templates for high-rate and long-life Li-Ion batteries. ACS Appl Mater Interfaces 10:14684–14697CrossRefGoogle Scholar
  25. 25.
    Zhao K, Lyu K, Liu S, Gan Q, He Z, Zhou Z (2017) Ordered porous Mn3O4@N-doped carbon/graphene hybrids derived from metal–organic frameworks for supercapacitor electrodes. J Mater Sci 52:446–457. CrossRefGoogle Scholar
  26. 26.
    Chen L-D, Zheng Y-Q, Zhu H-L (2018) Manganese oxides derived from Mn(II)-based metal–organic framework as supercapacitor electrode materials. J Mater Sci 53:1346–1355. CrossRefGoogle Scholar
  27. 27.
    Rodenas T, Luz I, Prieto G, Seoane B, Miro H, Corma A, Kapteijn F, Xamena FXL, Gascon J (2015) Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat Mater 14:48–55CrossRefGoogle Scholar
  28. 28.
    Li C, Hu X, Tong W, Yan W, Lou X, Shen M, Hu B (2017) Ultrathin manganese-based metal–organic framework nanosheets: low-cost and energy-dense lithium storage anodes with the coexistence of metal and ligand redox activities. ACS Appl Mater Interfaces 9:29829–29838CrossRefGoogle Scholar
  29. 29.
    Meiting Z, Qipeng L, Qinglang M, Hua Z (2017) Two-dimensional metal-organic framework nanosheets. Small. Methods 1:1600030Google Scholar
  30. 30.
    Guan C, Zhao W, Hu Y, Lai Z, Li X, Sun S, Zhang H, Cheetham AK, Wang J (2017) Cobalt oxide and N-doped carbon nanosheets derived from a single two-dimensional metal-organic framework precursor and their application in flexible asymmetric supercapacitors. Nanoscale Horizons 2:99–105CrossRefGoogle Scholar
  31. 31.
    Fang G, Zhou J, Liang C, Pan A, Zhang C, Tang Y, Tan X, Liu J, Liang S (2016) MOFs nanosheets derived porous metal oxide-coated three-dimensional substrates for lithium-ion battery applications. Nano Energy 26:57–65CrossRefGoogle Scholar
  32. 32.
    Zhao K, Liu S, Ye G, Gan Q, Zhou Z, He Z (2018) High-yield bottom-up synthesis of 2D metal-organic frameworks and their derived ultrathin carbon nanosheets for energy storage. J Mater Chem A 6:2166–2175CrossRefGoogle Scholar
  33. 33.
    Gan Q, Liu S, Zhao K, Wu Y, He Z, Zhou Z (2016) Graphene supported nitrogen-doped porous carbon nanosheets derived from zeolitic imidazolate framework for high performance supercapacitors. RSC Adv 6:78947–78953CrossRefGoogle Scholar
  34. 34.
    Hu H, Lou X, Li C, Hu X, Li T, Chen Q, Shen M, Hu B (2016) A thermally activated manganese 1,4-benzenedicarboxylate metal organic framework with high anodic capability for Li-ion batteries. New J Chem 40:9746–9752CrossRefGoogle Scholar
  35. 35.
    Peng Y, Li Y, Ban Y, Jin H, Jiao W, Liu X, Yang W (2014) Metal-organic framework nanosheets as building blocks for molecular sieving membranes. Science 346:1356–1359CrossRefGoogle Scholar
  36. 36.
    Gan Q, Zhao K, Liu S, He Z (2017) Solvent-free synthesis of N-doped carbon coated ZnO nanorods composite anode via a ZnO support-induced ZIF-8 in situ growth strategy. Electrochim Acta 250:292–301CrossRefGoogle Scholar
  37. 37.
    He Z, Jiang Y, Li Y, Zhu J, Zhou H, Meng W, Wang L, Dai L (2018) Carbon layer-exfoliated, wettability-enhanced, SO3H-functionalized carbon paper: A superior positive electrode for vanadium redox flow battery. Carbon 127:297–304CrossRefGoogle Scholar
  38. 38.
    Zheng F, Yin Z, Xia H, Bai G, Zhang Y (2017) Porous MnO@C nanocomposite derived from metal-organic frameworks as anode materials for long-life lithium-ion batteries. Chem Eng J 327:474–480CrossRefGoogle Scholar
  39. 39.
    Zhao K, Liu S, Wu Y, Lv K, Yuan H, He Z (2015) Long cycling life supercapacitors electrode materials: ultrathin manganese dioxide nanoscrolls adhered to graphene by electrostatic self-assembly. Electrochim Acta 174:1234–1243CrossRefGoogle Scholar
  40. 40.
    He Z, Wu J, Gao B, He H (2015) Hydrothermal synthesis and characterization of aluminum-free mn-β zeolite: a catalyst for phenol hydroxylation. ACS Appl Mater Interfaces 7:2424–2432CrossRefGoogle Scholar
  41. 41.
    Lee JH, Sa YJ, Kim TK, Moon HR, Joo SH (2014) A transformative route to nanoporous manganese oxides of controlled oxidation states with identical textural properties. J. Mater. Chem. A 2:10435–10443CrossRefGoogle Scholar
  42. 42.
    Zheng K, Li Y, Zhu M, Yu X, Zhang M, Shi L, Cheng J (2017) The porous carbon derived from water hyacinth with well-designed hierarchical structure for supercapacitors. J Power Sources 366:270–277CrossRefGoogle Scholar
  43. 43.
    Sun D, Tang Y, Ye D, Yan J, Zhou H, Wang H (2017) Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li- ion batteries. ACS Appl Mater Interfaces 9:5254–5262CrossRefGoogle Scholar
  44. 44.
    Zhang C, Chen M, Paulson SC, Rateick RG, Birss VI (2016) New insights into the early stages of thermal oxidation of carbon/carbon composites using electrochemical methods. Carbon 108:178–189CrossRefGoogle Scholar
  45. 45.
    Chen L, Zhang M, Yang X, Li W, Zheng J, Gan W, Xu J (2017) Sandwich-structured MnO2@N-doped Carbon@MnO2 nanotubes for high-performance supercapacitors. J Alloys Compd 695:3339–3347CrossRefGoogle Scholar
  46. 46.
    Li M, Chen Q, Zhan H (2017) Ultrathin manganese dioxide nanosheets grown on partially unzipped nitrogen-doped carbon nanotubes for high-performance asymmetric supercapacitors. J Alloys Compd 702:236–243CrossRefGoogle Scholar
  47. 47.
    He Z, Jiang Y, Zhu J, Li Y, Jiang Z, Zhou H, Meng W, Wang L, Dai L (2018) Boosting the performance of LiTi2(PO 4)3/C anode for aqueous lithium ion battery by Sn doping on Ti sites. J Alloys Compd 731:32–38CrossRefGoogle Scholar
  48. 48.
    Dong J, Lu G, Wu F, Xu C, Kang X, Cheng Z (2018) Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl Surf Sci 427:986–993CrossRefGoogle Scholar
  49. 49.
    Wang L, Huang M, Chen S, Kang L, He X, Lei Z, Shi F, Xu H, Liu Z-H (2017) δ-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance. J Mater Chem A 5:19107–19115CrossRefGoogle Scholar
  50. 50.
    Chen S, Cai D, Yang X, Chen Q, Zhan H, Qu B, Wang T (2017) Metal-organic frameworks derived nanocomposites of mixed-valent MnOx nanoparticles in situ grown on ultrathin carbon sheets for high-performance supercapacitors and lithium-ion batteries. Electrochim Acta 256:63–72CrossRefGoogle Scholar
  51. 51.
    Wu SX, Hui KS, Hui KN (2018) Carbon nanotube@manganese oxide nanosheet core-shell structure encapsulated within reduced graphene oxide film for flexible all-solid-state asymmetric supercapacitors. Carbon 132:776–784CrossRefGoogle Scholar
  52. 52.
    Ali GAM, Yusoff MM, Algarni H, Chong KF (2018) One-step electrosynthesis of MnO2/rGO nanocomposite and its enhanced electrochemical performance. Ceram Int 44:7799–7807CrossRefGoogle Scholar
  53. 53.
    Wang L, Ouyang Y, Jiao X, Xia X, Lei W, Hao Q (2018) Polyaniline-assisted growth of MnO2 ultrathin nanosheets on graphene and porous graphene for asymmetric supercapacitor with enhanced energy density. Chem Eng J 334:1–9CrossRefGoogle Scholar
  54. 54.
    Ou X, Li Q, Xu D, Guo J, Yan F (2018) In situ growth of MnO2 nanosheets on N-doped carbon nanotubes derived from polypyrrole tubes for supercapacitors. Chem -Asian J 13:545–551CrossRefGoogle Scholar
  55. 55.
    Li Y, Jian J, Xiao L, Liu F, Cheng G, Sun M, Zhou J (2018) Electrostatic self-assembly deposition of manganese dioxide nanosheets on functionalized graphene sheets as supercapacitor electrode. Ceram Int 44:2269–2273CrossRefGoogle Scholar
  56. 56.
    Wang X, Chen S, Li D, Sun S, Peng Z, Komarneni S, Yang D (2018) Direct interfacial growth of MnO2 nanostructure on hierarchically porous carbon for high-performance asymmetric supercapacitors. ACS Sustain Chem Eng 6:633–641CrossRefGoogle Scholar
  57. 57.
    Luo X, Yang JY, Yan D, Wang W, Wu X, Zhu ZH (2017) MnO2-decorated 3D porous carbon skeleton derived from mollusc shell for high-performance supercapacitor. J Alloys Compd 723:505–511CrossRefGoogle Scholar
  58. 58.
    Chen Q, Chen J, Zhou Y, Song C, Tian Q, Xu J, Wong C-P (2018) Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon. Appl Surf Sci 440:1027–1036CrossRefGoogle Scholar
  59. 59.
    Liu J, Zhang Y, Li Y, Li J, Chen Z, Feng H, Li J, Jiang J, Qian D (2015) In situ chemical synthesis of sandwich-structured MnO2/graphene nanoflowers and their supercapacitive behavior. Electrochim Acta 173:148–155CrossRefGoogle Scholar
  60. 60.
    Xiong Y, Zhou M, Chen H, Feng L, Wang Z, Yan X, Guan S (2015) Synthesis of honeycomb MnO2 nanospheres/carbon nanoparticles/graphene composites as electrode materials for supercapacitors. Appl Surf Sci 357:1024–1030CrossRefGoogle Scholar
  61. 61.
    Wang N, Zhao P, Liang K, Yao M, Yang Y, Hu W (2017) CVD-grown polypyrrole nanofilms on highly mesoporous structure MnO2 for high performance asymmetric supercapacitors. Chem Eng J 307:105–112CrossRefGoogle Scholar
  62. 62.
    Wang P, Zhou C, Wang S, Kong H, Li Y, Li S, Sun S (2017) Facial synthesis of MnO2/three dimensional graphene composite and its application in supercapacitors. J Mater Sci Mater Electron 28:12514–12522CrossRefGoogle Scholar
  63. 63.
    Dong J, Lu G, Wu F, Xu C, Kang X, Cheng Z (2018) Facile synthesis of a nitrogen-doped graphene flower-like MnO2 nanocomposite and its application in supercapacitors. Appl Surf Sci 427:986–993CrossRefGoogle Scholar
  64. 64.
    Han S, Liu S, Wang R, Liu X, Bai L, He Z (2017) One-step electrodeposition of nanocrystalline ZnxCo3–xO4 films with high activity and stability for electrocatalytic oxygen evolution. ACS Appl Mater Interfaces 9:17186–17194CrossRefGoogle Scholar
  65. 65.
    Gan Q, He H, Zhao K, He Z, Liu S, Yang S (2018) Plasma-induced oxygen vacancies in urchin-like anatase titania coated by carbon for excellent sodium-ion battery anodes. ACS Appl Mater Interfaces 10:7031–7042CrossRefGoogle Scholar
  66. 66.
    Li J, Yuan X, Liu S, He Z, Zhou Z, Li A (2017) A low-cost and high-performance sulfonated polyimide proton-conductive membrane for vanadium redox flow/static batteries. ACS Appl Mater Interfaces 9:32643–32651CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese ResourcesCentral South UniversityChangshaPeople’s Republic of China
  2. 2.Science College of Hunan Agricultural UniversityChangshaPeople’s Republic of China

Personalised recommendations