Skip to main content
Log in

Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Mg3Sb2-based Zintl compounds are considered as promising thermoelectric materials due to their low thermal conductivity and high Seebeck coefficient. In this paper, we studied the thermoelectric properties of p-type lithium (Li)-doped Mg3Sb2 prepared by ball milling and hot pressing. A maximum ZT value ~ 0.6 at about 773 K was achieved in Mg2.975Li0.025Sb2, which was ascribed to the increased carrier concentration by Li doping. Mixed scattering mechanism is dominated at lower temperature, yielding higher carrier mobility. Isoelectronic substitution of Zn on the Mg site further increased the electrical conductivity by narrowing the band gap and decreased the lattice thermal conductivity by double substitution, contributing to an enhanced average ZT in Mg2.475Zn0.5Li0.025Sb2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Zhao L, Kanatzidis MG (2016) An overview of advanced thermoelectric materials. J Materiomics 2:101–103

    Article  Google Scholar 

  2. Shi X, Chen L (2016) Thermoelectric materials step up. Nat Mater 15:691–692

    Article  CAS  Google Scholar 

  3. Zhu T, Liu Y, Fu C, Heremans JP, Snyder JG, Zhao X (2017) Compromise and synergy in high-efficiency thermoelectric materials. Adv Mater 29:1605884–1605909

    Article  Google Scholar 

  4. Liu W, Hu J, Zhang S, Deng M, Han C-G, Liu Y (2017) New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater Today Phys 1:50–60

    Article  Google Scholar 

  5. Su X, Wei P, Li H, Liu W, Yan Y, Li P, Su C, Xie C, Zhao W, Zhai P, Zhang Q, Tang X, Uher C (2017) Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Adv Mater 29:1602013–1602025

    Article  Google Scholar 

  6. Li W, Wu Y, Lin S, Chen Z, Li J, Zhang X, Zheng L, Pei Y (2017) Advances in environment-friendly SnTe thermoelectrics. ACS Energy Lett 2:2349–2355

    Article  CAS  Google Scholar 

  7. Li S, Li X, Ren Z, Zhang Q (2018) Recent progress towards high performance of tin chalcogenide thermoelectric materials. J Mater Chem A 6:2432–2448

    Article  CAS  Google Scholar 

  8. Li J, Li X, Chen C, Hu W, Yu F, Zhao Z, Zhang L, Yu D, Tian Y, Xu B (2018) Enhanced thermoelectric performance of bismuth-doped magnesium silicide synthesized under high pressure. J Mater Sci 53:9091–9098. https://doi.org/10.1007/s10853-018-2185-8

    Article  CAS  Google Scholar 

  9. Slack GA (1995) New materials and performance limits for thermoeletric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC Press, Boca Raton

    Google Scholar 

  10. Zhang J, Xu B, Wang L, Yu D, Yang J, Yu F, Liu Z, He J, Wen B, Tian Y (2012) High-pressure synthesis of phonon-glass electron-crystal featured thermoelectric LixCo4Sb12. Acta Mater 60:1246–1251

    Article  CAS  Google Scholar 

  11. Rogl G, Rogl P (2017) How nanoparticles can change the figure of merit, ZT, and mechanical properties of skutterudites. Mater Today Phys 3:48–69

    Article  Google Scholar 

  12. Dong Y, Puneet P, Tritt TM, Nolas GS (2015) High-temperature thermoelectric properties of p-type skutterudites Ba0.15YbxCo3FeSb12 and YbyCo3FeSb9As3. J Mater Sci 50:34–39. https://doi.org/10.1007/s10853-014-8562-z

    Article  CAS  Google Scholar 

  13. Toberer ES, May AF, Snyder GJ (2010) Zintl chemistry for designing high efficiency thermoelectric materials. Chem Mater 22:624–634

    Article  CAS  Google Scholar 

  14. Shuai J, Mao J, Song S, Zhang Q, Chen G, Ren Z (2017) Recent progress and future challenges on thermoelectric Zintl materials. Mater Today Phys 1:74–95

    Article  Google Scholar 

  15. Zhang J, Song L, Pedersen SH, Yin H, Hung LT, Iversen BB (2016) Discovery of high-performance low-cost n-type Mg3Sb2-based thermoelectric materials with multi-valley conduction bands. Nat Commun 8:13901–13908

    Article  Google Scholar 

  16. Bhardwaj A, Rajput A, Shukla AK, Pulikkotil JJ, Srivastava AK, Dhar A, Gupta G, Auluck S, Misra DK, Budhani RC (2013) Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Adv 3:8504–8516

    Article  CAS  Google Scholar 

  17. Shuai J, Wang Y, Liu Z, Kim HS, Mao J, Sui J, Ren Z (2016) Enhancement of thermoelectric performance of phase pure Zintl compounds Ca1−xYbxZn2Sb2, Ca1−xEuxZn2Sb2, and Eu1−xYbxZn2Sb2 by mechanical alloying and hot pressing. Nano Energy 25:136–144

    Article  CAS  Google Scholar 

  18. Min W, Guo K, Wang J, Zhao J (2015) Effect of manganese doping on the thermoelectric properties of Zintl phase EuCd2Sb2. J Rare Earth 33:1093–1097

    Article  CAS  Google Scholar 

  19. Pomrehn GS, Zevalkink A, Zeier WG, van de Walle A, Snyder GJ (2014) Defect-controlled electronic properties in AZn2Sb2 Zintl phases. Angew Chem 126:3490–3494

    Article  Google Scholar 

  20. Sun J, Singh DJ (2017) Thermoelectric properties of AMg2X2, AZn2Sb2 (A = Ca, Sr, Ba; X = Sb, Bi), and Ba2ZnX2 (X = Sb, Bi) Zintl compounds. J Mater Chem A 5:8499–8509

    Article  CAS  Google Scholar 

  21. Sun J, Shuai J, Ren Z, Singh DJ (2017) Computational modelling of the thermoelectric properties of p-type Zintl compound CaMg2Bi2. Mater Today Phys 2:40–45

    Article  Google Scholar 

  22. Tamaki H, Sato HK, Kanno T (2016) Isotropic conduction network and defect chemistry in Mg3+xSb2-based layered Zintl compounds with high thermoelectric performance. Adv Mater 28:10182–10187

    Article  CAS  Google Scholar 

  23. Ohno S, Imasato K, Anand S, Tamaki H, Kang SD, Gorai P, Sato HK, Toberer ES, Kanno T, Snyder GJ (2017) Phase boundary mapping to obtain n -type Mg3Sb2-based thermoelectrics. Joule 2:1–14

    Google Scholar 

  24. Shuai J, Mao J, Song S, Zhu Q, Sun J, Wang Y, He R, Zhou J, Chen G, Singh DJ, Ren Z (2017) Tuning the carrier scattering mechanism to effectively improve the thermoelectric properties. Energy Environ Sci 10:799–807

    Article  CAS  Google Scholar 

  25. Mao J, Shuai J, Song SW, Wu YX, Dally R, Zhou JW, Liu ZH, Sun JF, Zhang QY, dela Cruz C, Wilson S, Pei YZ, Singh DJ, Chen G, Chu CW, Ren ZF (2017) Manipulation of ionized impurity scattering for achieving high thermoelectric performance in n-type Mg3Sb2-based materials. Proc Natl Acad Sci USA 114:10548–10553

    Article  CAS  Google Scholar 

  26. Song L, Zhang J, Iversen BB (2017) Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials. J Mater Chem A 5:4932–4939

    Article  CAS  Google Scholar 

  27. Shuai J, Wang Y, Kim HS, Liu Z, Sun J, Chen S, Sui J, Ren Z (2015) Thermoelectric properties of Na-doped Zintl compound: Mg3−xNaxSb2. Acta Mater 93:187–193

    Article  CAS  Google Scholar 

  28. Bhardwaj A, Misra DK (2014) Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework. RSC Adv 4:34552–34560

    Article  CAS  Google Scholar 

  29. Zhang KX, Qin XY, Xin HX, Li HJ, Zhang J (2009) Transport and thermoelectric properties of nanocrystal substitutional semiconductor alloys (Mg1−xCdx)3Sb2 doped with Ag. J Alloys Compd 484:498–504

    Article  CAS  Google Scholar 

  30. Ahmadpour F, Kolodiazhnyi T, Mozharivskyj Y (2007) Structural and physical properties of Mg3−xZnxSb2 (x = 0–1.34). J Solid State Chem 180:2420–2428

    Article  CAS  Google Scholar 

  31. Bhardwaj A, Chauhan NS, Goel S, Singh V, Pulikkotil JJ, Senguttuvan TD, Misra DK (2016) Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit. Phys Chem Chem Phys 18:6191–6200

    Article  CAS  Google Scholar 

  32. Saparamadu U, de Boor J, Mao J, Song S, Tian F, Liu W, Zhang Q, Ren Z (2017) Comparative studies on thermoelectric properties of p-type Mg2Sn0.75Ge0.25 doped with lithium, sodium, and gallium. Acta Mater 141:154–162

    Article  CAS  Google Scholar 

  33. de Boor J, Saparamadu U, Mao J, Dahal K, Müller E, Ren Z (2016) Thermoelectric performance of Li doped, p-type Mg2(Ge,Sn) and comparison with Mg2(Si,Sn). Acta Mater 120:273–280

    Article  Google Scholar 

  34. Liu Z, Wang Y, Mao J, Geng H, Shuai J, Wang Y, He R, Cai W, Sui J, Ren Z (2016) Lithium doping to enhance thermoelectric performance of MgAgSb with weak electron-phonon coupling. Adv Energy Mater 6:1502269

    Article  Google Scholar 

  35. Mao J, Wu Y, Song S, Zhu Q, Shuai J, Liu Z, Pei Y, Ren Z (2017) Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Lett 2:2245–2250

    Article  CAS  Google Scholar 

  36. Kim S, Kim C, Hong YK, Onimaru T, Suekuni K, Takabatake T, Jung MH (2014) Thermoelectric properties of Mn-doped Mg–Sb single crystals. J Mater Chem A 2:12311–12316

    Article  CAS  Google Scholar 

  37. Ren Z, Shuai J, Mao J, Zhu Q, Song S, Ni Y, Chen S (2018) Significantly enhanced thermoelectric properties of p-type Mg3Sb2 via co-doping of Na and Zn. Acta Mater 143:265–271

    Article  CAS  Google Scholar 

  38. Xia SQ, King P, Bobev S (2006) Mg and Zn disorder in Mg1.59(1)Zn1.41(1)Sb2. Acta Crystallogr A 62:i184–i186

    CAS  Google Scholar 

  39. Xin HX, Qin XY, Jia JH, Song CJ, Zhang KX, Zhang J (2009) Thermoelectric properties of nanocrystalline (Mg1−xZnx)3Sb2 isostructural solid solutions fabricated by mechanical alloying. J Phys D Appl Phys 42:165403–165410

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Nature Science Foundation of China (11674078), Shenzhen Fundamental Research Projects (JCYJ20160427184825558), Startup Foundation for Advanced Talents from Shenzhen and Startup Foundation from Harbin Institute of Technology (Shenzhen).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Cao, Xingjun Liu or Qian Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Li, X., Li, S. et al. Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework. J Mater Sci 53, 16001–16009 (2018). https://doi.org/10.1007/s10853-018-2555-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2555-2

Keywords

Navigation