Advertisement

Journal of Materials Science

, Volume 53, Issue 18, pp 13090–13099 | Cite as

Sponge-like porous Ni1.8Fe1.2O4 nanocubes as high-performance anodes for lithium-ion batteries

  • Haipeng Ren
  • Yichen Deng
  • Yulong Zhao
  • Zheng Xing
  • Xiaoyu Dong
  • Hongxia Shi
  • Qingxia Yin
  • Zhicheng Ju
Energy materials
  • 81 Downloads

Abstract

Sponge-like porous Ni1.8Fe1.2O4 nanocubes were prepared by heating Prussian blue analogue KNi x Fe3−x(CN)6·nH2O nanocubes. It is showed that the nanocubes exhibit nanoscale particles, multiple through-hole frameworks and high surface area owing to the emission organic molecules, such as CO x and NO y , during the heat treatment process in air at 300 °C. When it is used as lithium-ion batteries (LIBs) anode material shows an outstanding rate performance with advanced capacities of 1268, 1189, 1156, 1052, 1028 and 858 mAh g−1 at 100, 200, 500, 1000, 2000 and 5000 mA g−1, respectively. The sponge-like porous and large specific surface area of nanocubes shorten the diffusion path for Li ion and electron and evidently mitigation bulk effects during discharge/charge process, which effectively improve electrochemical performance of LIBs. These results show that the sponge-like porous Ni1.8Fe1.2O4 nanocubes have a great application value as LIBs anode in view of its facile and effective preparation technology and excellent electrochemical performance.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central University 2017XKQY003.

Supplementary material

10853_2018_2550_MOESM1_ESM.pdf (304 kb)
Supplementary material 1 (PDF 304 kb)

References

  1. 1.
    Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  2. 2.
    Reddy MV, Subba Rao GV, Chowdari BVR (2013) Metal oxides and oxysalts as anode materials for Li ion batteries. Chem Rev 113:5364–5457CrossRefGoogle Scholar
  3. 3.
    Khalil A, Lalia BS, Hashaikeh R (2016) Nickel oxide nanocrystals as a lithium-ion battery anode: structure-performance relationship. J Mater Sci 51:6624–6638.  https://doi.org/10.1007/s10853-016-9946-z CrossRefGoogle Scholar
  4. 4.
    Xu Z, Liu Y, Zhao WX, Li BJ, Zhou X, Shen H (2016) Assembling mesoporous ZnxCo3−xO4 fibers with interconnected nanocrystals via a topotactic conversion route for enhanced performance Lithium-ion batteries. Electrochim Acta 190:894–902CrossRefGoogle Scholar
  5. 5.
    Xing Z, Ji X, Zhao Y et al (2017) Co2+xTi1−xO4 nano-octahedra as high performance anodes for lithium-ion batteries. J Maters Chem A 5:8714–8724CrossRefGoogle Scholar
  6. 6.
    Jiang F, Liu Y, Wang Q, Zhou Y (2018) Hierarchical Fe3O4@NC composites: ultra-long cycle life anode materials for lithium ion batteries. J Mater Sci 53:2127–2136.  https://doi.org/10.1007/s10853-017-1651-z CrossRefGoogle Scholar
  7. 7.
    Zheng FC, Zhu DQ, Chen QW (2014) Facile fabrication of porous NixCo3−xO4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. ACS Appl Mater Interfaces 6:9256–9264CrossRefGoogle Scholar
  8. 8.
    Jiang BB, Han CP, Li B, He YJ, Lin ZQ (2016) In-situ crafting of ZnFe2O4 nanoparticles impregnated within continuous carbon network as advanced anode materials. ACS Nano 10:2728–2735CrossRefGoogle Scholar
  9. 9.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496CrossRefGoogle Scholar
  10. 10.
    Wang J, Zhang H, Lv X et al (2016) Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance. J Mater Sci 51:6590–6599.  https://doi.org/10.1007/s10853-016-9902-y CrossRefGoogle Scholar
  11. 11.
    Ju Z, Ma G, Zhao Y, Xing Z, Qiang Y, Qian Y (2015) A facile method for synthesis of porous NiCo2O4 nanorods as a high-performance anode material for Li-ion batteries. Part Part Syst Charact 32:1012–1019CrossRefGoogle Scholar
  12. 12.
    Zheng FC, Zhu DQ, Shi XH, Chen QW (2015) Metal–organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J Mater Chem A 3:2815–2824CrossRefGoogle Scholar
  13. 13.
    Hu X, Zhang S, Li X et al (2017) Large-scale and template-free synthesis of hierarchically porous MnCo2O4.5 as anode material for lithium-ion batteries with enhanced electrochemical performance. J Mater Sci 52:5268–5282.  https://doi.org/10.1007/s10853-017-0767-5 CrossRefGoogle Scholar
  14. 14.
    Wang Z, Zhou L, Lou XW (2012) Metal oxide hollow nanostructures for lithium-ion batteries. Adv Mater 24:1903–1911CrossRefGoogle Scholar
  15. 15.
    Yan Y, Du FH, Shen XP, Ji ZY, Zhou H, Zhu GX (2014) Porous SnO2–Fe2O3 nanocubes with improved electrochemical performance for lithium ion batteries. Dalton T 43:17544–17550CrossRefGoogle Scholar
  16. 16.
    Liu L, Yang XF, Lv CX et al (2016) Seaweed-derived route to Fe2O3 hollow nanoparticles/n-doped graphene aerogels with high lithium ion storage performance. Acs Appl Mater Interfaces 8:7047–7053CrossRefGoogle Scholar
  17. 17.
    Xiong Q-q, J-p Tu, Xia X-h, Zhao X-y, C-d Gu, Wang X-l (2013) A three-dimensional hierarchical Fe2O3@NiO core/shell nanorod array on carbon cloth: a new class of anode for high-performance lithium-ion batteries. Nanoscale 5:7906–7912CrossRefGoogle Scholar
  18. 18.
    Xia W, Mahmood A, Zou RQ, Xu Q (2015) Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866CrossRefGoogle Scholar
  19. 19.
    Han Y, Zhao ML, Dong L et al (2015) MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries. J Mater Chem A 3:22542–22546CrossRefGoogle Scholar
  20. 20.
    Gan Q, Zhao K, Liu S, He Z (2017) MOF-derived carbon coating on self-supported ZnCo2O4–ZnO nanorod arrays as high-performance anode for lithium-ion batteries. J Mater Sci 52:7768–7780.  https://doi.org/10.1007/s10853-017-1043-4 CrossRefGoogle Scholar
  21. 21.
    Yang J, Ju Z, Jiang Y et al (2018) Enhanced capacity and rate capability of nitrogen/oxygen dual-doped hard carbon in capacitive potassium-ion storage. Adv Mater 30:1700104CrossRefGoogle Scholar
  22. 22.
    Zheng S, Li X, Yan B et al (2017) Transition-metal (Fe Co, Ni) based metal–organic frameworks for electrochemical energy storage. Adv Energy Mater 7:1602733CrossRefGoogle Scholar
  23. 23.
    Li G-C, Hua X-N, Liu P-F, Xie Y-X, Han L (2015) Porous Co3O4 microflowers prepared by thermolysis of metal–organic framework for supercapacitor. Mater Chem Phys 168:127–131CrossRefGoogle Scholar
  24. 24.
    Huang M, Mi K, Zhang J et al (2017) MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage. J Mater Chem A 5:266–274CrossRefGoogle Scholar
  25. 25.
    Wu L-L, Wang Z, Long Y et al (2017) Multishelled NixCo3−xO4 hollow microspheres derived from bimetal–organic frameworks as anode materials for high-performance lithium-ion batteries. Small 13:1604270CrossRefGoogle Scholar
  26. 26.
    Li H, Liang M, Sun W, Wang Y (2016) Bimetal–organic framework: one-step homogenous formation and its derived mesoporous ternary metal oxide nanorod for high-capacity, high-rate, and long-cycle-life lithium storage. Adv Func Mater 26:1098–1103CrossRefGoogle Scholar
  27. 27.
    Cui ZT, Wang SG, Zhang YH, Cao MH (2015) High-performance lithium storage of Co3O4 achieved by constructing porous nanotube structure. Electrochim Acta 182:507–515CrossRefGoogle Scholar
  28. 28.
    Han L, Yu XY, Lou XW (2016) Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni–Co–mixed oxide for enhanced oxygen evolution. Adv Mater 28:4601–4605CrossRefGoogle Scholar
  29. 29.
    Bai Z, Zhang Y, Zhang Y, Guo C, Tang B, Sun D (2015) MOFs-derived porous Mn2O3 as high-performance anode material for Li-ion battery. J Mater Chem A 3:5266–5269CrossRefGoogle Scholar
  30. 30.
    Xiong SL, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically transformed from chrysanthemum-like Co(CO3)0.5(OH)·0.11H2O and their lithium-storage properties. Adv Funct Mater 22:861–871CrossRefGoogle Scholar
  31. 31.
    Bai Z, Sun B, Fan N et al (2012) Branched mesoporous Mn3O4 nanorods: facile synthesis and catalysis in the degradation of methylene blue. Chem A Eur J 18:5319–5324CrossRefGoogle Scholar
  32. 32.
    Hu L, Chen QW (2014) Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Nanoscale 6:1236–1257CrossRefGoogle Scholar
  33. 33.
    Hu XW, Liu S, Qu BT, You XZ (2015) Starfish-shaped Co3O4/ZnFe2O4 hollow nanocomposite: synthesis, supercapacity, and magnetic properties. ACS Appl Mater Interfaces 7:9972–9981CrossRefGoogle Scholar
  34. 34.
    Xing Z, Ju Z, Yang J, Xu H, Qian Y (2012) One-step hydrothermal synthesis of ZnFe2O4 nano-octahedrons as a high capacity anode material for Li-ion batteries. Nano Res 5:477–485CrossRefGoogle Scholar
  35. 35.
    Zheng F, Zhu D, Shi X, Chen Q (2015) Metal–organic framework-derived porous Mn1.8Fe1.2O4 nanocubes with an interconnected channel structure as high-performance anodes for lithium ion batteries. J Maters Chem A 3:2815–2824CrossRefGoogle Scholar
  36. 36.
    Li J, Xiong S, Liu Y, Ju Z, Qian Y (2013) High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 5:981–988CrossRefGoogle Scholar
  37. 37.
    Zhou X, Chen G, Tang J, Ren Y, Yang J (2015) One-dimensional NiCo2O4 nanowire arrays grown on nickel foam for high-performance lithium-ion batteries. J Power Sources 299:97–103CrossRefGoogle Scholar
  38. 38.
    Ju Z, Zhang E, Zhao Y et al (2015) One-pot hydrothermal synthesis of FeMoO4 nanocubes as an anode material for lithium-ion batteries with excellent electrochemical performance. Small 11:4753–4761CrossRefGoogle Scholar
  39. 39.
    Wang N, Ma X, Wang Y, Yang J, Qian Y (2015) Porous MnFe2O4 microrods as advanced anodes for Li-ion batteries with long cycle lifespan. J Mater Chem A 3:9550–9555CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Province Engineering Laboratory of High Efficient Energy Storage Technology and Equipments, School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouChina
  2. 2.Jiangsu Frey New Energy Co., LtdXuzhouChina
  3. 3.Jiangsu Frey Battery Technology Co., LtdXuzhouChina

Personalised recommendations