Advertisement

Journal of Materials Science

, Volume 53, Issue 18, pp 12974–12987 | Cite as

Thin film deposition of organic hole transporting materials: optical, thermodynamic and morphological properties of naphthyl-substituted benzidines

  • José C. S. Costa
  • Adélio Mendes
  • Luís M. N. B. F. Santos
Electronic materials
  • 236 Downloads

Abstract

Aromatic diamines and naphthyl-substituted benzidines (BDB, TPB, TPD, NPB, α-NPD, β-NPB, TNB) are listed as one of the best series available of hole transport materials used as thin films in organic electronics (OLEDs, OPVs). High-quality, homogeneous and compact thin films (≈ 300 nm of thickness) of this compound series were prepared by a physical vapor deposition procedure. SEM and XRD characterizations evidence the amorphous nature of the thin films of NPB, α-NPD, β-NPB and TNB, prepared onto ITO and gold surfaces by a controlling mass flow rate. The semiconducting behavior of this class of π-conjugated materials was investigated through UV–vis characterization by the determination of optical band gaps (≈ 3 eV). According to DSC, SEM and XRD analyses, the materials evidenced an amorphous structure and high thermal stability in the glassy state. Analyzing the melting properties, the ratio Tg/Tm = 2/3 was observed for TPB and NPB, which have a higher molecular symmetry, while Tg/Tm = 3/4 was observed for the asymmetric β-NPB and TPD. The first accurate measurements of the vapor pressures and thermodynamic properties of phase transition were obtained for the most common hole transport material (NPB) in OLEDs. The relative stability of the crystalline phases of the diamine derivatives (BDB, TPB, NPB) was found to be enthalpically driven, increasing linearly with the molar volume of the compound.

Notes

Acknowledgements

The authors thank Fundacão para a Ciência e Tecnologia (FCT), Lisbon, Portugal, and the European Social Fund (ESF) for financial support to CIQUP, University of Porto (Projects Pest-C/QUI/UI0081/2013 and NORTE-01-0145-FEDER-000028, Sustainable Advanced Materials), and for financial support to LEPABE, University of Porto (Projects POCI-01-0145-FEDER-006939 and NORTE-01-0145-FEDER-000005—LEPABE-2-ECO-INNOVATION). Dr. José Costa also thanks FCT for the award of the Research Grant SFRH/BPD/116930/2016.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing financial interest.

Supplementary material

10853_2018_2547_MOESM1_ESM.docx (382 kb)
Supplementary material 1 (DOCX 382 kb)

References

  1. 1.
    Shirota Y (2000) organic materials for electronic and optoelectronic devices. J Mater Chem 10:1–25CrossRefGoogle Scholar
  2. 2.
    Adachi C, Nagai K, Tamoto N (1995) Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Appl Phys Lett 66:2679–2681CrossRefGoogle Scholar
  3. 3.
    Xiao L, Chen Z, Qu B, Luo J, Kong S, Gong Q, Kido J (2011) Recent progresses on materials for electrophosphorescent organic light-emitting devices. Adv Mater 23:926–952CrossRefGoogle Scholar
  4. 4.
    O´Neill M, Kelly SM (2011) Ordered materials for organic electronics and photonics. Adv Mater 23:566–584CrossRefGoogle Scholar
  5. 5.
    Geffroy B, Roy P, Prat C (2006) Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55:572–582CrossRefGoogle Scholar
  6. 6.
    Aonuma M, Oyamada T, Sasabe H (2007) Material design of hole transport materials capable of thick-film formation in organic light emitting diodes. Appl Phys Lett 90:183503CrossRefGoogle Scholar
  7. 7.
    Sano T, Nishio Y, Hamada Y, Takahashi H, Usuki T, Shibata K (2000) Design of conjugated molecular materials for optoelectronics. J Mater Chem 10:157–161CrossRefGoogle Scholar
  8. 8.
    Tao S, Zhou Y, Lee CS, Lee ST, Huang D, Zhang X (2008) Highly efficient nondoped blue organic light-emitting diodes based on anthracene-triphenylamine derivatives. J Phys Chem C 112:14603–14606CrossRefGoogle Scholar
  9. 9.
    Cias P, Slugovc C, Gescheidt G (2011) Hole transport in triphenylamine based oled devices: from theoretical modeling to properties prediction. J Phys Chem A 115:14519–14525CrossRefGoogle Scholar
  10. 10.
    Costa JCS, Santos LMNBF (2013) Hole transport materials based thin films: topographic structures and phase transition thermodynamics of triphenylamine derivatives. J Phys Chem C 117:10919–10928CrossRefGoogle Scholar
  11. 11.
    Naka S, Okada H, Onnagawa H, Yamaguchi Y, Tsutsui T (2000) Carrier transport properties of organic materials for EL device operation. Synth Met 111–112:331–333CrossRefGoogle Scholar
  12. 12.
    Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010CrossRefGoogle Scholar
  13. 13.
    Calió L, Kazim S, Gratzel M, Ahmad S (2016) Hole-transport materials for perovskite solar cells. Angew Chem Int Ed 55:14522–14545CrossRefGoogle Scholar
  14. 14.
    Leijtens T, Ding I-K, Giovenzana T, Bloking JT, McCehee MD, Sellinger A (2012) Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. ACS Nano 6:1455–1462CrossRefGoogle Scholar
  15. 15.
    Bi D, Yang L, Boschloo G, Hagfeldt A, Johansson EMJ (2013) Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J Phys Chem Lett 4:1532–1536CrossRefGoogle Scholar
  16. 16.
    Van Slyke SA, Chen CH, Tang CW (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162CrossRefGoogle Scholar
  17. 17.
    Tong QX, Lai SL, Chan MY, Lai KH, Tang JX, Kwong HL, Lee CS, Lee ST (2007) High Tg triphenylamine-based starburst hole-transporting material for organic light-emitting devices. Chem Mater 19:5851–5855CrossRefGoogle Scholar
  18. 18.
    Costa JCS, Lima CFRAC, Santos LMNBF (2014) Electron transport materials for OLEDs: understanding the crystal and molecular stability of the tris(8-hydroxyquinolines) of Al, Ga, and In. J Phys Chem C 118:21762–21769CrossRefGoogle Scholar
  19. 19.
    Mattox DM (2014) Handbook of physical vapor deposition (PVD) processing. Elsevier Science, AmsterdamGoogle Scholar
  20. 20.
    Costa JCS, Rocha RM, Vaz ICM, Torres MC, Mendes A, Santos LMNBF (2015) Description and test of a new multilayer thin film vapor deposition apparatus for organic semiconductor materials. J Chem Eng Data 60:3776–3791CrossRefGoogle Scholar
  21. 21.
    Halls MD, Tripp CP, Schlegel HB (2001) Structure and infrared (ir) assignments for the OLED material: N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4″-diamine (NPB). Phys Chem Chem Phys 3:2131–2136CrossRefGoogle Scholar
  22. 22.
    Li B, Chen J, Zhao Y, Yang D, Ma D (2011) Effects of carrier trapping and scattering on hole transport properties of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine thin films. Org Electron 12:974–979CrossRefGoogle Scholar
  23. 23.
    Shim S, Kim JT, Shin EJ, Chung NK, Ko MK, Kwon O, Yun JY (2016) Phase behaviors of NPB molecule under vacuum. Mater Res Bull 82:67–70CrossRefGoogle Scholar
  24. 24.
    Takebayashi Y, Morii N, Sue K, Furuya T, Yoda S, Ikemizu D, Taka H (2015) Solubility of N, N′-Di(1-naphthyl)-N, N′-diphenyl Benzidine (NPB) in various organic solvents: measurement and correlation with the hansen solubility parameter. Ind Eng Chem Res 54:8801–8808CrossRefGoogle Scholar
  25. 25.
    Chao YC, Chuang CH, Hsu HL, Wang HJ, Hsu YC, Chen CP, Jeng RJ (2016) Enhanced thermal stability of organic photovoltaics via incorporating triphenylamine derivatives as additives. Sol Energy Mater Sol Cell 157:666–675CrossRefGoogle Scholar
  26. 26.
    Tagare J, Ulla H, Satyanarayan MN, Vaidyanathan S (2018) Synthesis, photophysical and electroluminescence studies of new triphenylamine-phenanthroimidazole based materials for organic light emitting diodes. J Lumin 194:600–609CrossRefGoogle Scholar
  27. 27.
    Santos LMNBF, Lima LMSS, Lima CFRAC, Magalhaes FD, Torres MC, Schroder B, Ribeiro da Silva MAV (2011) New Knudsen effusion apparatus with simultaneous gravimetric and quartz crystal microbalance mass loss detection. J Chem Thermodyn 43:834–843CrossRefGoogle Scholar
  28. 28.
    Costa JCS, Taveira RJS, Lima CFRAC, Mendes A, Santos LMNBF (2016) Optical band gaps of organic semiconductor materials. Opt Mater 58:51–60CrossRefGoogle Scholar
  29. 29.
    Roux MV, Temprado M, Chickos JS, Nagano Y (2008) Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J Phys Chem Ref Data 37:1855–1996CrossRefGoogle Scholar
  30. 30.
    Sabbah R, Xu-wu A, Chickos JS, Planas Leitao ML, Roux MV, Torres LA (1999) Reference materials for calorimetry and differential thermal analysis. Thermochim Acta 331:93–204CrossRefGoogle Scholar
  31. 31.
    Martins JS, Bartolomeu AA, Santos WH, Filho LCS, Oliveira EF, Lavarda FC, Cuin A, Legnani C, Maciel IO, Fragneaud B, Quirino WG (2017) New class of organic hole-transporting materials based on xanthene derivatives for organic electronic applications. J Phys Chem C 121:12999–13007CrossRefGoogle Scholar
  32. 32.
    Rajagopal A, Wu CI, Kahn A (1998) Energy level offset at organic semiconductor heterojunctions. J Appl Phys 83:2649–2655CrossRefGoogle Scholar
  33. 33.
    Hill IG, Kahn A (1999) Organic semiconductor heterointerfaces containing bathocuproine. J Appl Phys 86:4515–4519CrossRefGoogle Scholar
  34. 34.
    New E, Howells T, Sullivan P, Jones TS (2013) Small molecule tandem organic photovoltaic cells incorporating an alpha-NPD optical spacer layer. Organ Electron 14:2353–2359CrossRefGoogle Scholar
  35. 35.
    O´Brien DF, Burrows PE, Forrest SR, Koene BE, Loy DE, Thompson ME (1998) Hole transporting materials with high glass transition temperatures for use in organic light-emitting devices. Adv Mater 10:1108–1112CrossRefGoogle Scholar
  36. 36.
    Lee YJ, Lee H, Byun Y, Song S, Kim JE, Eom D, Cha W, Park SS, Kim J, Kim H (2007) Study of thermal degradation of organic light emitting device structures by X-ray scattering. Thin Solid Films 515:5674–5677CrossRefGoogle Scholar
  37. 37.
    Lima CFRAC, Costa JCS, Melo A, Tavares HR, Silva AMS, Santos LMNBF (2015) Effect of self-association on the phase stability of triphenylamine derivatives. J Phys Chem A 119:6676–6682CrossRefGoogle Scholar
  38. 38.
    Zhang HG, Yu WT, Wang L, Yang JX, Liu Z, Tao XT, Jiang MH (2005) Crystal structure of N, N, N′, N′-Tetraphenyl-1,4-benzenediamine, C30H24N2. Z Kristallogr NCS 220:101–102Google Scholar
  39. 39.
    Zhang HG, Yu WT, Ya SN, Cheng C, Tao XT (2006) N, N, N′, N′-Tetra-phenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E62:o5236–o5238Google Scholar
  40. 40.
    Song Y, Di C, Yang X, Li S, Xu W, Liu Y, Yang L, Shuai Z, Zhang D, Zhu DA (2006) Cyclic triphenylamine dimer for organic field-effect transistors with high performance. J Am Chem Soc 128:15940–15941CrossRefGoogle Scholar
  41. 41.
    Shao X, Asahi K, Yamauchi T, Sugimoto T, Shiro MA (2009) New crystal phase of N, N, N′, N′-Tetraphenyl-1,1′-biphenyl-4,4′-diamine. Acta Crystallogr E 65:o1224CrossRefGoogle Scholar
  42. 42.
    Zhang Z, Burkholder E, Zubieta J (2004) Non-merohedrally twinned crystals of N, N′-Bis(3-methylphenyl)-N, N′-diphenyl-1,1′-biphenyl-4,4′-diamine: an excellent triphenylamine-based hole transporter. Acta Crystallogr C 60:o452–o454CrossRefGoogle Scholar
  43. 43.
    Yoshizawa K, Chano A, Ito A, Tanaka K, Yamabe T, Fujita H, Yamauchi J, Shiro M (1992) ESR of the cationic triradical of 1,3,5-tris(diphenylamino)benzene. J Am Chem Soc 114:5994–5998CrossRefGoogle Scholar
  44. 44.
    Cheng JA, Cheng PJ (2010) Crystal study of N, N′-diphenyl-N, N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine. J Chem Crystallogr 40:557–560CrossRefGoogle Scholar
  45. 45.
    Lima CFRAC, Rocha MAA, Melo A, Gomes LR, Low JN, Santos LMNBF (2011) Structural and thermodynamic characterization of polyphenylbenzenes. J Phys Chem A 115:11876–11888CrossRefGoogle Scholar
  46. 46.
    Ribeiro da Silva MAV, Santos LMNBF, Lima LMSS (2008) Standard molar enthalpies of formation and of sublimation of the terphenyl isomers. J Chem Thermodyn 43:375–385CrossRefGoogle Scholar
  47. 47.
    Lima LMSS (2009) Estudo Energético de Alguns Hidrocarbonetos Aromáticos Policíclicos e Polifenilos. Ph.D. Dissertation, University of Porto, PortugalGoogle Scholar
  48. 48.
    Venables JA, Spiller GDT, Hanbucken M (1984) Nucleation and growth of thin films. Rep Prog Phys 47:399–459CrossRefGoogle Scholar
  49. 49.
    Zhang Z, Lagally MG (1997) Atomistic processes in the early stages of thin-film growth. Science 276:377–383CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIQUP – Centro de Investigação em Química da Universidade do Porto, Department of Chemistry and Biochemistry, Faculty of ScienceUniversity of PortoPortoPortugal
  2. 2.LEPABE – Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of EngineeringUniversity of PortoPortoPortugal

Personalised recommendations