Skip to main content

Advertisement

Log in

Polymer composites with balanced dielectric constant and loss via constructing trilayer architecture

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Polymers with high dielectric constants are widely used in electronic devices and electric systems. However, polymers exhibit low dielectric constants, which greatly limit their applications. Currently, ferroelectric ceramic fillers and conductive filler are commonly filled into polymer matrix to achieve enhanced dielectric constants. Unfortunately, even though the loading fraction of ferroelectric ceramic fillers exceeds 50 vol%, the enhancement of dielectric constant is still limited. On the contrary, although ultrahigh dielectric constant could be realized in conductor/polymer composites containing small loading fractions of conductive fillers, the loss is usually very high owing to severe leakage conduction. To overcome the shortcomings of the above-mentioned two types of high dielectric composites, this work combined them together and designed a series of trilayer polymer composites consisting of one carbon nanotube/polyimide composite layer sandwiched by two BaTiO3/polyimide composite layers. Fortunately, the trilayer architecture could effectively overcome the drawbacks of carbon nanotube/polyimide and BaTiO3/polyimide single-layer composites, hence the balanced dielectric constant and loss. When the BT content of the outer layer is 50 wt% and the carbon nanotube content of the middle layer is 4 wt%, the trilayer film possesses a high dielectric constant of ~ 35 @10 kHz, which is about 700% over pristine PI matrix (ε′ ≈ 5 @10 kHz). Meanwhile, the loss tangent of the trilayer composite (tanδ ≈ 0.03 @10 kHz) is still comparative to pristine PI (tanδ ≈ 0.01 @10 kHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Shi ZC, Chen SG, Fan RH, Wang XA, Wang X, Zhang ZD, Sun K (2014) Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites. J Mater Chem C 2:6752–6757

    Article  Google Scholar 

  2. Wang Z, Wang T, Wang C, Xiao YJ (2017) The effect of interfacial interaction-induced soft percolation regime on dielectric properties in Ba(Fe0.5Nb0.5)O3/P(VDF-TrFE) nanocomposites. J Mater Sci 52:11496–11505. https://doi.org/10.1007/s10853-017-1290-4

    Article  Google Scholar 

  3. Pan ZB, Liu BH, Zhai JW, Yao LM, Yang K, Shen B (2017) NaNbO3 two-dimensional platelets induced highly energy storage density in trilayer architecture composites. Nano Energy 40:587–595

    Article  Google Scholar 

  4. Chi QG, Ma T, Zhang Y, Cui Y, Zhang CH, Lin JQ, Wang X, Lei QQ (2017) Significantly enhanced energy storage density for poly(vinylidene fluoride) composites by induced PDA-coated 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 nanofibers. J Mater Chem A 5:16757–16766

    Article  Google Scholar 

  5. Pan ZB, Yao ML, Zhai JW, Yao X, Chen H (2018) Interfacial coupling effect in organic/inorganic nanocomposites with high energy density. Adv Mater 30:1705662

    Article  Google Scholar 

  6. Inui T, Koga H, Nogi M, Komoda H, Suganuma K (2015) A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater 27:1112–1116

    Article  Google Scholar 

  7. Bartlett MD, Fassler A, Kazem N, Markvicka EJ, Mandal P, Majidi C (2016) Stretchable, high-k dielectric elastomers through liquid-metal inclusions. Adv Mater 28:3726–3731

    Article  Google Scholar 

  8. Choi TY, Hwang BU, Kim BY, Trung TQ, Nam YH, Kim DN, Eom K, Lee NE (2017) Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Appl Mater Interfaces 9:18022–18030

    Article  Google Scholar 

  9. Zhang K, Li GH, Feng LM et al (2017) Ultralow percolation threshold and enhanced electromagnetic interference shielding in poly(l-lactide)/multi-walled carbon nanotube nanocomposites with electrically conductive segregated networks. J Mater Chem C 5:9359–9369

    Article  Google Scholar 

  10. Sun K, Fan RH, Zhang XH et al (2018) An overview of metamaterials and their achievements in wireless power transfer. J Mater Chem C 6:2925–2943

    Article  Google Scholar 

  11. Wu NN, Qiao J, Liu JR, Du WJ, Xu DM, Liu W (2018) Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. Adv Compos Hybrid Mater 1:149–159

    Article  Google Scholar 

  12. Song B, Wang TT, Sun HG et al (2017) Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans 46:15769–15777

    Article  Google Scholar 

  13. Guo YQ, Xu GJ, Yang XT et al (2018) Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J Mater Chem C 6:3004–3015

    Article  Google Scholar 

  14. Guo J, Song HX, Liu H et al (2017) Polypyrrole-interface-functionalized nano-magnetite epoxy nanocomposites as electromagnetic wave absorbers with enhanced flame retardancy. J Mater Chem C 5:5334–5344

    Article  Google Scholar 

  15. Guan XY, Zheng GQ, Dai K, Liu CT, Yan XR, Shen CY, Guo ZH (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8:14150–14159

    Article  Google Scholar 

  16. Gu HB, Zhang HY, Ma C et al (2017) Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J Phys Chem C 121:13265–13273

    Article  Google Scholar 

  17. Zhang L, Qin MK, Yu W et al (2017) Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J Electrochem Soc 164:H1086–H1090

    Article  Google Scholar 

  18. Zhang L, Yu W, Han C et al (2017) Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J Electrochem Soc 164:H651–H656

    Article  Google Scholar 

  19. Wang C, Mo BM, He ZF et al (2018) Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer 138:363–368

    Article  Google Scholar 

  20. Hu Z, Shao Q, Huang YD et al (2018) Light triggered interfacial damage self-healing of poly(p-phenylene benzobisoxazole) fiber composites. Nanotechnology 29:185602

    Article  Google Scholar 

  21. Cheng XQ, Wang ZX, Jiang X, Li TX, Lau CH, Guo ZH, Ma J, Shao L (2018) Towards sustainable ultrafast molecular–separation membranes: from conventional polymers to emerging materials. Prog Mater Sci 92:258–283

    Article  Google Scholar 

  22. Sun ZY, Zhang L, Dang F et al (2017) Experimental and simulation-based understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19:3288–3298

    Article  Google Scholar 

  23. Wu JG, Xiao DQ, Zhu JG (2015) Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115:2559–2595

    Article  Google Scholar 

  24. Zhang TD, Li WL, Zhao Y, Yu Y, Fei WD (2018) High energy storage performance of opposite double-heterojunction ferroelectricity-insulators. Adv Funct Mater 28:1706211

    Article  Google Scholar 

  25. Chi QG, Ma T, Zhang Y et al (2018) Excellent energy storage of sandwich-structured PVDF-based composite at low electric field by introduction of the hybrid CoFe2O4@BZT-BCT nanofibersg. ACS Sustain Chem Eng 6:403–412

    Article  Google Scholar 

  26. Liu SH, Zhai JW (2015) Improving the dielectric constant and energy density of poly(vinylidene fluoride) composites induced by surface-modified SrTiO3 nanofibers by polyvinylpyrrolidone. J Mater Chem A 3:1511–1517

    Article  Google Scholar 

  27. Yang N, Xu C, Hou J et al (2016) Preparation and properties of thermally conductive polyimide/boron nitride composites. RSC Adv 6:18279–18287

    Article  Google Scholar 

  28. Chi QG, Dong JF, Zhang CH, Wong CP, Wang X, Lei QQ (2016) Nano iron oxide-deposited calcium copper titanate/polyimide hybrid films induced by an external magnetic field: toward a high dielectric constant and suppressed loss. J Mater Chem C 4:8179–8188

    Article  Google Scholar 

  29. Shi ZC, Fan RH, Zhang ZD et al (2012) Random composites of nickel networks supported by porous alumina toward double negative materials. Adv Mater 24:2349–2352

    Article  Google Scholar 

  30. Cheng CB, Fan RH, Wang ZY et al (2017) Tunable and weakly negative permittivity in carbon/silicon nitride composites with different carbonizing temperatures. Carbon 125:103–112

    Article  Google Scholar 

  31. Xu X, Zhang H, Lou H, Ma C, Li Y, Guo Z, Gu H (2018) Chitosan-coated-magnetite with covalently grafted polystyrene based carbon nanocomposites for hexavalent chromium adsorption. Eng Sci 1:46–54. https://doi.org/10.30919/espub.es.180308

    Google Scholar 

  32. Sun YG, Tang J, Qin FX, Yuan JS, Zhang K, Li J, Zhu DM, Qin LC (2017) Hybrid lithium-ion capacitors with asymmetric graphene electrodes. J Mater Chem A 5:13601–13609

    Article  Google Scholar 

  33. Sun K, Xie PT, Wang ZY et al (2017) Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125:50–57

    Article  Google Scholar 

  34. Shi ZC, Wang J, Mao F, Yang C, Zhang C, Fan RH (2017) Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers. J Mater Chem A 5:14575–14582

    Article  Google Scholar 

  35. Yoon HW, Bok C, Park NK (2017) Enhanced dielectric properties of polyimide/BaTiO3 nanocomposite by embedding the polypyrrole@polyimide core-shell nanoparticles. Macromol Res 25:290–296

    Article  Google Scholar 

  36. Xu WH, Ding YC, Jiang SH, Ye W, Liao XJ, Hou HQ (2016) High permittivity nanocomposites fabricated from electrospun polyimide/BaTiO3 hybrid nanofibers. Polym Compo 37:795–801

    Google Scholar 

  37. Dang ZM, Zhou T, Yao SH et al (2009) Advanced calcium copper titanate/polyimide functional hybrid films with high dielectric permittivity. Adv Mater 21:2077–2082

    Article  Google Scholar 

  38. Huang Y, Huang X, Schadler LS, He J, Jiang P (2016) Core@double-shell structured nanocomposites: a route to high dielectric constant and low loss material. ACS Appl Mater Interfaces 8:25496–25507

    Article  Google Scholar 

  39. Feng Y, Li WL, Hou YF, Yu Y, Cao WP, Zhang TD, Fei WD (2015) Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J Mater Chem C 3:1250–1260

    Article  Google Scholar 

  40. Liao XJ, Ye W, Chen LL, Jiang SH, Wang G, Zhang L, Hou HQ (2017) Flexible hdC-G reinforced polyimide composites with high dielectric permittivity. Compos Part A 101:50–58

    Article  Google Scholar 

  41. Xu WH, Ding YC, Jiang SH, Zhu J, Ye W, Shen YL, Hou HQ (2014) Mechanical flexible PI/MWCNTs nanocomposites with high dielectric permittivity by electrospinning. Eur Polym J 59:129–135

    Article  Google Scholar 

  42. Zhang L, Liu Z, Lu X, Yang G, Zhang XY, Cheng ZY (2016) Nano-clip based composites with a low percolation threshold and high dielectric constant. Nano Energy 26:550–557

    Article  Google Scholar 

  43. Chi QG, Gao ZY, Zhang CH, Cui Y, Dong JF, Wang X, Lei QQ (2017) Dielectric properties of sandwich-structured BaTiO3/polyimide hybrid flms. J Mater Sci Mater Electron 28:15142–15148

    Article  Google Scholar 

  44. Chen YQ, Lin BP, Zhang XQ, Wang JC, Lai CW, Sun Y, Liu YR, Yang H (2014) Enhanced dielectric properties of amino-modified CNT/polyimide composite films with a sandwich structure. J Mater Chem A 2:14118–14126

    Article  Google Scholar 

  45. Wu HP, Yang Q, Meng QH, Ahmad A, Zhang M, Zhu LY, Liu YG, Wei ZX (2016) A polyimide derivative containing different carbonyl groups for flexible lithium ion batteries. J Mater Chem A 4:2115–2121

    Article  Google Scholar 

  46. Lin L, Ye P, Cao C, Jin Q, Xu GS, Shen YH, Yuan YP (2015) Rapid microwave-assisted green production of a crystalline polyimide for enhanced visible-light-induced photocatalytic hydrogen production. J Mater Chem A 3:10205–10208

    Article  Google Scholar 

  47. Maji P, Choudhary RB, Majhi M (2017) Structural, electrical and optical properties of silane-modified ZnO reinforced PMMA matrix and its catalytic activities. J Non-Cryst Solids 456:40–48

    Article  Google Scholar 

  48. Duduta M, Wood RJ, Clarke DR (2016) Multilayer dielectric elastomers for fast, programmable actuation without prestretch. Adv Mater 28:8058–8063

    Article  Google Scholar 

  49. Kong L, Yin XW, Han MK et al (2017) Macroscopic bioinspired graphene sponge modified with in situ grown carbon nanowires and its electromagnetic properties. Carbon 111:94–102

    Article  Google Scholar 

  50. Baer E, Zhu L (2017) 50th anniversary perspective: dielectric phenomena in polymers and multilayered dielectric films. Macromolecules 50:2239–2256

    Article  Google Scholar 

  51. Sun D, Yin JH, Liu YY, Liu XX (2016) The electrical and thermal properties of polyimide/boron nitride nanocomposite films. J Polym Res 23:254

    Article  Google Scholar 

  52. Feng H, Fang XL, Liu XY, Pei QB, Cui ZK, Deng SF, Gu JL, Zhuang QX (2018) Reduced polyaniline decorated reduced graphene oxide/polyimide nanocomposite films with enhanced dielectric properties and thermostability. Compos Part A 109:578–584

    Article  Google Scholar 

  53. Sun WD, Lu XJ, Jiang JY et al (2017) Dielectric and energy storage performances of polyimide/BaTiO3 nanocomposites at elevated temperatures. J Appl Phys 121:244101

    Article  Google Scholar 

  54. Sun YY, Wang JL, Qi SL, Tian GF, Wu DZ (2015) Permittivity transition from highly positive to negative: polyimide/carbon nanotube composite’s dielectric behavior around percolation threshold. Appl Phys Lett 107:012905

    Article  Google Scholar 

  55. Akhter T, Mun SC, Saeed S, Park OO, Siddiqi HM (2015) Enhancing the dielectric properties of highly compatible new polyimide/γ-ray irradiated MWCNT nanocomposites. RSC Adv 5:71183–71189

    Article  Google Scholar 

  56. Chi QG, Gao ZY, Zhang CH, Cui Y, Dong JF, Wang X, Lei QQ (2017) Dielectric properties of sandwich-structured BaTiO3/polyimide hybrid flms. J Mater Sci 28:15142–15148. https://doi.org/10.1007/s10854-017-7390-8

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (51773187, 51402271), Foundation for Outstanding Young Scientist in Shandong Province (BS2014CL003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhicheng Shi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 401 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shi, Z., Mao, F. et al. Polymer composites with balanced dielectric constant and loss via constructing trilayer architecture. J Mater Sci 53, 13230–13242 (2018). https://doi.org/10.1007/s10853-018-2545-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2545-4

Keywords

Navigation