Journal of Materials Science

, Volume 53, Issue 18, pp 13081–13089 | Cite as

Hybrid nanogenerator of BaTiO3 nanowires and CNTs for harvesting energy

  • Yupei Wang
  • Xu Zhang
  • Xiaobin Guo
  • Dong Li
  • Baoshan Cui
  • Kai Wu
  • Jijun Yun
  • Jian Mao
  • Li Xi
  • Yalu Zuo
Energy materials


Lead-free piezoelectric nano-based generator with energy harvesting has drawn a great attention in the recent years. BaTiO3 as a lead-free material with high piezoelectric coefficient and dielectric constant has been widely examined to realize nanogenerators. In this work, high-quality BaTiO3 (BTO) nanowires were prepared by hydrothermal synthesis as the piezoelectric material and then BTO/PVDF-based nanogenerators have been fabricated. Furthermore, the CNTs were added to improve the output voltage performance of the nanogenerator. It shows high performance of a maximum output voltage density of 7.3 V/cm2 and the stable current density of 3.3 nA/cm2. This hybrid nanogenerator with enhanced performance is a potential material for the application in harvesting energy, self-powered electronics and low-frequency capacitors.



This work was supported by the National Natural Science Foundation of China (No. 51671098), the Natural Science Foundation of Gansu Province (No. 17JR5RA210) and the Fundamental Research Funds for the Central Universities (lzujbky-2015-122).


  1. 1.
    Yu H, He X, Ding w, Hu Y, Yang D, Lu S, Wu C, Zou H, Liu R, Lu C, Wang ZL (2017) A self-powered dynamic displacement monitoring system based on triboelectric accelerometer. Adv Energy Mater 7:1700565CrossRefGoogle Scholar
  2. 2.
    Wang J, Ding W, Pan L, Changsheng W, Hua Y, Yang L, Liao R, Wang Z (2018) Self-powered wind sensor system for detecting wind speed and direction based on a triboelectric nanogenerator. ACS Nano 12:3954–3963CrossRefGoogle Scholar
  3. 3.
    Lin ZH, Yang Y, Wu JM, Liu Y, Zhang F, Wang ZL (2012) BaTiO3 nanotubes-based flexible and transparent nanogenerators. J Phys Chem Lett 3:3599–3604CrossRefGoogle Scholar
  4. 4.
    Park KI, Son JH, Hwang GT, Jeong CK, Ryu J, Koo M, Choi I, Lee SH, Byun M, Wang ZL, Lee KJ (2014) Highly efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates. Adv Mater 26:2514–2520CrossRefGoogle Scholar
  5. 5.
    Lee KY, Gupta MK, Kim SW (2015) Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics. Nano Energy 14:139–160CrossRefGoogle Scholar
  6. 6.
    Li Z, Wang ZL (2011) Air/liquid-pressure and heartbeat-driven flexible fiber nanogenerators as a micro/nano-power source or diagnostic sensor. Adv Mater 23:84–89CrossRefGoogle Scholar
  7. 7.
    Lee S, Bae SH, Lin L, Yang Y, Park C, Kim SW, Cha SN, Kim H, Park YJ, Wang ZL (2013) Super-flexible nanogenerator for energy harvesting from gentle wind and as an active deformation sensor. Adv Funct Mater 23:2445–2449CrossRefGoogle Scholar
  8. 8.
    Xue X, Wang S, Guo W, Zhang Y, Wang ZL (2012) Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. Nano Lett 12:5048–5054CrossRefGoogle Scholar
  9. 9.
    Chen X, Xu S, Yao N, Shi Y (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett 10:2133CrossRefGoogle Scholar
  10. 10.
    Chan C, Tran VH, Wang J, Fuh YK, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10:726CrossRefGoogle Scholar
  11. 11.
    Wang ZL, Song J (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 5771:242–246CrossRefGoogle Scholar
  12. 12.
    Park KI, Xu S, Liu Y, Hwang GT, Kang SJL, Wang ZL, Lee KJ (2010) Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates. Nano Lett 10:4939–4943CrossRefGoogle Scholar
  13. 13.
    Nadaud K, Morini F, Dahiya AS et al (2018) Double buffer circuit for the characterization of piezoelectric nanogenerators based on ZnO nanowires. Appl Phys Lett 112:063901CrossRefGoogle Scholar
  14. 14.
    Han JK, Jeon DH, Cho SY et al (2017) Flexible piezoelectric generators by using the bending motion method of direct-grown-PZT nanoparticles on carbon nanotubes. Nanomaterials 7:308CrossRefGoogle Scholar
  15. 15.
    Chen D, Sharma T, Zhang JXJ (2014) Mesoporous surface control of PVDF thin films for enhanced piezoelectric energy generation. Sens Actuators A 216:196–201CrossRefGoogle Scholar
  16. 16.
    Cohen-Tanugi D, Akey A, Yao N (2010) Ultralow superharmonic resonance for functional nanowires. Nano Lett 10:852–859CrossRefGoogle Scholar
  17. 17.
    Nguyen TD, Deshmukh N, Nagarah JM, Kramer T, Purohit PK, Berry MJ, McAlpine MC (2012) Piezoelectric nanoribbons for monitoring cellular deformations. Nat Nanotechnol 7:587–593CrossRefGoogle Scholar
  18. 18.
    Xu S, Poirier G, Yao N (2012) PMN-PT nanowires with a very high piezoelectric constant. Nano Lett 1:602–607Google Scholar
  19. 19.
    Christman JA, Woolcott RR, Kingon AI, Nemanich RJ (1998) Piezoelectric measurements with atomic force microscopy. Appl Phys Lett 73:3851–3853CrossRefGoogle Scholar
  20. 20.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic press, LondonGoogle Scholar
  21. 21.
    Berlincourt D, Jaffe H (1958) Elastic and piezoelectric coefficients of single-crystal barium titanate. Phys Rev 111:143–148CrossRefGoogle Scholar
  22. 22.
    Ni X, Wang F, Lin A, Xu Q, Yang Z, Qin Y (2013) Flexible nanogenerator based on single BaTiO3 Nanowire. Sci Adv Mater 5:1781–1787CrossRefGoogle Scholar
  23. 23.
    Faust D, Lakes R (2015) Temperature and substrate dependence of piezoelectric sensitivity for PVDF films. Ferroelectric 481:1–9CrossRefGoogle Scholar
  24. 24.
    Abolhasani MM, Naebe M, Jalali-Arani A, Guo Q (2014) Crystalline structures and α → β and γ polymorphs transformation induced by nanoclay in PVDF-based nanocomposite. NANO 09:1450065CrossRefGoogle Scholar
  25. 25.
    Martins P, Costa CM, Ferreira JCC, Lanceros-Mendez S (2012) Correlation between crystallization kinetics and electroactive polymer phase nucleation in ferrite/poly(vinylidene fluoride) magnetoelectric nanocomposites. J Phys Chem B 116:794–801CrossRefGoogle Scholar
  26. 26.
    Milani A, Castiglioni C, Radice S (2015) FT-IR spectroscopy and DFT calculations on fluorinated macromer diols: IR intensity and association properties. J Phys Chem B 119:4888–4897CrossRefGoogle Scholar
  27. 27.
    Xing C, Zhao L, You J, Dong W, Cao X, Li Y (2012) Impact of ionic liquid-modified multiwalled carbon nanotubes on the crystallization behavior of poly(vinylidene fluoride). J Phys Chem B 116:8312–8320CrossRefGoogle Scholar
  28. 28.
    Chen X, Han M, Chen H, Cheng X, Song Y, Su Z, Jiang Y, Zhang H (2017) A wave shaped hybrid piezoelectric and triboelectric nanogenerator based on P(VDF-TrFE) nanofibers. Nanoscale 9:1263–1270CrossRefGoogle Scholar
  29. 29.
    De Volder MFL, Tawfick SH, Baughman RH, Hart AJ (2013) Carbon nanotubes: present and future commercial applications. Science 339:535–539CrossRefGoogle Scholar
  30. 30.
    Gruner G (2006) Carbon nanotube films for transparent and plastic electronics. J Mater Chem 16:3533CrossRefGoogle Scholar
  31. 31.
    Zhong J, Zhang Y, Zhong Q, Hu Q, Hu B, Wang ZL, Zhou J (2014) Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8:6273–6280CrossRefGoogle Scholar
  32. 32.
    Suo G, Yu Y, Zhang Z, Wang S, Zhao P, Li J, Wang X (2016) Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. ACS Appl Mater Interfaces 8:34335–34341CrossRefGoogle Scholar
  33. 33.
    Yan J, Jeong YG (2016) High performance flexible piezoelectric nanogenerators based on BaTiO3 nanofibers in different alignment modes. ACS Appl Mater Interfaces 8:15700–15709CrossRefGoogle Scholar
  34. 34.
    Koka A, Zhou Z, Tang H, Sodano HA (2014) Controlled synthesis of ultra-long vertically aligned BaTiO3 nanowire arrays for sensing and energy harvesting applications. Nanotechnology 25:375603CrossRefGoogle Scholar
  35. 35.
    Miranda L, Boulahya K, Sinclair DC, Hernando M, Varela A, GonzalezCalbet JM, Parras M (2012) Structure–property relations in an ion deficient 5H- and 3C-polytype Ba(Ti, Co)O3–δ perovskites. J Mater Chem 22:15092–15103CrossRefGoogle Scholar
  36. 36.
    Wu L, Jain A, Brown DW, Stoica GM, Agnew SR, Clausen B, Fielden DE, Liaw PK (2008) Twinning–detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A. Acta Mater 56:688–695CrossRefGoogle Scholar
  37. 37.
    Liu X, Kuang X, Xu S, Wang X (2017) High-sensitivity piezoresponse force microscopy studies of single polyvinylidene fluoride nanofibers. Mater Lett 191:189–192CrossRefGoogle Scholar
  38. 38.
    Wang JH, Chen CQ (2015) Asymptotic effective piezoelectric coefficient solution of piezoresponse force microscopy for a transversely isotropic piezoelectric film. MATEC Web Conf 43:01006CrossRefGoogle Scholar
  39. 39.
    Vasilev S, Zelenovskiy P, Vasileva D, Nuraeva A, Shur VY, Kholkin AL (2016) Piezoelectric properties of diphenylalanine microtubes prepared from the solution. J Phys Chem Solids 93:68–72CrossRefGoogle Scholar
  40. 40.
    Sharma M, Srinivas V, Madras G, Bose S (2016) Outstanding dielectric constant and piezoelectric coefficient in electrospun nanofiber mats of PVDF containing silver decorated multiwall carbon nanotubes: assessing through piezoresponse force microscopy. RSC Adv 6:6251–6258CrossRefGoogle Scholar
  41. 41.
    Park Kwi-Il, Lee Minbaek, Liu Ying, Moon San, Hwang Geon-Tae, Zhu Guang, Kim Ji Eun, Kim Sang Ouk, Kim Do Kyung, Wang Zhong Lin, Lee Keon Jae (2012) Flexible nanocomposite generator made of BaTiO3 nanoparticles and graphitic carbons. Adv Mater 24:2937CrossRefGoogle Scholar
  42. 42.
    Zhang M, Yang J, Si C, Han G, Zhao Y, Ning J (2015) Research on the piezoelectric properties of AlN thin films for MEMS applications. Micromachines 6:1236–1248CrossRefGoogle Scholar
  43. 43.
    Fan YJ, Meng XS, Li HY, Kuang SY, Zhang L, Wu Y, Wang ZL, Zhu G (2016) Stretchable porous carbon nanotube-elastomer hybrid nanocomposite for harvesting mechanical energy. Adv Mater 29:1603115CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, School of Physical Science and TechnologyLanzhou UniversityLanzhouPeople’s Republic of China

Personalised recommendations