Advertisement

Journal of Materials Science

, Volume 53, Issue 17, pp 12650–12661 | Cite as

A UV-curable epoxy with “soft” segments for 3D-printable shape-memory materials

  • Jing Wang
  • Zhongmin Xue
  • Gang Li
  • Yu Wang
  • Xuewei Fu
  • Wei-Hong Zhong
  • Xiaoping Yang
Polymers

Abstract

Three-dimensional (3D)-printable shape-memory polymers (SMPs) are of great interest for making advanced shape-memory materials. However, it has been challenging to combine 3D-printable capability with shape-memory function into one material. Here, we report a UV-curable epoxy with excellent shape-memory performance and improved toughness as compared with traditional epoxy counterpart. The epoxy system is realized by cross-linking epoxy resin diglycidyl ether of bisphenol F (DGEBF) (“hard” segments) with toughening agent 3-ethyl-3-oxetanemethanol (TMPO) (“soft” segments), which finally creates a three-dimensional network with TMPO-co-DGEBF block structures. The fold-deploy tests show that the shape fixity ratio (Rf) and the shape recovery ratio (Rr) of the epoxy with 50 wt% TMPO soft segment are above 97 and 99% even after 20 cycles of testing, respectively. In addition to bringing shape-memory performance, the toughness of the epoxy system is notably improved by the TMPO soft segments. This study provides a very promising epoxy system for 3D-printable shape-memory materials.

Notes

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grant No. U1362205 and Grant No. U156420074) and Jiangsu Province Science and Technology Support Project (No. BE2014146-4).

Supplementary material

10853_2018_2520_MOESM1_ESM.docx (326 kb)
Supplementary material 1 (DOCX 326 kb)

References

  1. 1.
    Xiao X, Kong D, Qiu X et al (2015) Sci Rep 5:14137.  https://doi.org/10.1038/srep14137 CrossRefGoogle Scholar
  2. 2.
    Yu K, Ge Q, Qi HJ (2014) Nat Commun 5:3066.  https://doi.org/10.1038/ncomms4066 CrossRefGoogle Scholar
  3. 3.
    Hoeher R, Raidt T, Rose M, Katzenberg F, Tiller JC (2013) J Polym Sci Part B: Polym Phys 51:1033.  https://doi.org/10.1002/polb.23301 CrossRefGoogle Scholar
  4. 4.
    Liu Y, Gall K, Dunn ML, Greenberg AR, Diani J (2006) Int J Plast 22:279.  https://doi.org/10.1016/j.ijplas.2005.03.004 CrossRefGoogle Scholar
  5. 5.
    Parameswaranpillai J, Ramanan SP, Jose S et al (2017) Ind Eng Chem Res 56:14069.  https://doi.org/10.1021/acs.iecr.7b03676 CrossRefGoogle Scholar
  6. 6.
    Choong YYC, Maleksaeedi S, Eng H, Wei J, Su P-C (2017) Mater Des 126:219.  https://doi.org/10.1016/j.matdes.2017.04.049 CrossRefGoogle Scholar
  7. 7.
    Hu J, Zhu Y, Huang H, Lu J (2012) Prog Polym Sci 37:1720CrossRefGoogle Scholar
  8. 8.
    Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S (2016) Adv Mater 28:4449.  https://doi.org/10.1002/adma.201503132 CrossRefGoogle Scholar
  9. 9.
    Estelle K, Blair D, Evans K, Gozen BA (2017) J Manuf Process 28:500.  https://doi.org/10.1016/j.jmapro.2017.04.018 CrossRefGoogle Scholar
  10. 10.
    Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) Compos B Eng 110:442.  https://doi.org/10.1016/j.compositesb.2016.11.034 CrossRefGoogle Scholar
  11. 11.
    Ge Q, Sakhaei AH, Lee H, Dunn CK, Fang NX, Dunn ML (2016) Sci Rep 6:31110.  https://doi.org/10.1038/srep31110 CrossRefGoogle Scholar
  12. 12.
    Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA (2016) Nat Mater 15:413.  https://doi.org/10.1038/nmat4544 CrossRefGoogle Scholar
  13. 13.
    Bhushan B, Caspers M (2017) Microsyst Technol 23:1117.  https://doi.org/10.1007/s00542-017-3342-8 CrossRefGoogle Scholar
  14. 14.
    Hu J, Chen W, Fan P et al (2017) Polym Testing 64:235.  https://doi.org/10.1016/j.polymertesting.2017.09.038 CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Hu J, Chen W, Fan P et al (2017) Polym Testing 62:335.  https://doi.org/10.1016/j.polymertesting.2017.07.001 CrossRefGoogle Scholar
  17. 17.
    Shen X, Liu X, Wang J, Dai J, Zhu J (2017) Ind Eng Chem Res 56:8508.  https://doi.org/10.1021/acs.iecr.7b01624 CrossRefGoogle Scholar
  18. 18.
    Abishera R, Velmurugan R, Gopal KVN (2017) Compos Sci Technol 141:145.  https://doi.org/10.1016/j.compscitech.2017.01.020 CrossRefGoogle Scholar
  19. 19.
    Santiago D, Fabregat-Sanjuan A, Ferrando F, De la Flor S (2017) J Appl Polym Sci.  https://doi.org/10.1002/app.44623 Google Scholar
  20. 20.
    Lowenberg C, Balk M, Wischke C, Behl M, Lendlein A (2017) Acc Chem Res 50:723.  https://doi.org/10.1021/acs.accounts.6b00584 CrossRefGoogle Scholar
  21. 21.
    Zheng K, Zhu X, Qian X, Li J, Yang J, Nie J (2016) Polym Int 65:1486.  https://doi.org/10.1002/pi.5258 CrossRefGoogle Scholar
  22. 22.
    Schmidt AM (2006) Macromol Rapid Commun 27:1168.  https://doi.org/10.1002/marc.200600225 CrossRefGoogle Scholar
  23. 23.
    Rao KV, Ananthapadmanabha GS, Dayananda GN (2016) J Mater Eng Perform 25:5314.  https://doi.org/10.1007/s11665-016-2409-5 CrossRefGoogle Scholar
  24. 24.
    Tsige M, Stevens MJ (2004) Macromolecules 37:630CrossRefGoogle Scholar
  25. 25.
    Esen DS, Karasu F, Arsu N (2011) Prog Org Coat 70:102.  https://doi.org/10.1016/j.porgcoat.2010.10.010 CrossRefGoogle Scholar
  26. 26.
    Macan J, Ivankovic H, Ivankovic M, Mencer HJ (2004) J Appl Polym Sci 92:498.  https://doi.org/10.1002/app.20024 CrossRefGoogle Scholar
  27. 27.
    Wang Y, Li X, Pan Y, Zheng Z, Ding X, Peng Y (2014) RSC Adv 4:17156.  https://doi.org/10.1039/c4ra00165f CrossRefGoogle Scholar
  28. 28.
    Liu Y, Han C, Tan H, Du X (2010) Mater Sci Eng A 527:2510CrossRefGoogle Scholar
  29. 29.
    Liu Y, Sun H, Tan H, Du X (2013) J Appl Polym Sci 127:3152CrossRefGoogle Scholar
  30. 30.
    Kong D, Xiao X (2016) Sci Rep 6:33610.  https://doi.org/10.1038/srep33610 CrossRefGoogle Scholar
  31. 31.
    White EV, Arzberger SC, Tupper ML et al (2005) 5762:35.  https://doi.org/10.1117/12.600583
  32. 32.
    Ahn S-K, Deshmukh P, Kasi RM (2010) Macromolecules 43:7330.  https://doi.org/10.1021/ma101145r CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Organic-Inorganic CompositesBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  2. 2.Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijingPeople’s Republic of China
  3. 3.Sinoma Science & Technology Co. LtdBeijingPeople’s Republic of China
  4. 4.School of Mechanical and Materials EngineeringWashington State UniversityPullmanUSA

Personalised recommendations