Journal of Materials Science

, Volume 53, Issue 17, pp 12421–12431 | Cite as

Onion-like carbon microspheres as long-life anodes materials for Na-ion batteries

Energy materials
  • 33 Downloads

Abstract

Room-temperature Na-ion batteries have been widely used as promising energy storage systems for large-scale storage due to the nature abundance and low cost of Na. However, the search for an anode with appropriate Na storage and high structural stability still remains challenging. In this work, the carbon microsphere films-coated Ni foam is prepared by a simple chemical vapor deposition method and is used as a novel anode for the long-lifespan Na-ion batteries. These carbon microspheres possess special onion-like structures that enhance the Na-ions intercalation and exhibit excellent Na storage properties. In addition, directly coating the carbon microsphere films on Ni foam current collectors without binders and conductive additives results in an integrated electrode structure, which avoids the undesirable interfaces and reduces the packaging volume. Compared to the common used hard carbon anode with long discharge plateau and short lifespan, this integrated electrode exhibits a slope discharge profile with higher security and demonstrates a long lifespan of 700 cycles with a high capacity retention of 83%. Furthermore, the storage mechanism of sodium ion is also investigated in detail by ex situ Raman, X-ray diffraction and nuclear magnetic resonance techniques in this study.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 51703052), the Fundamental Research Funds for the Central Universities of China (2662017QD028) and the Science and Technology Department of Hubei Province (2018FB238).

Compliance with ethical standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

10853_2018_2515_MOESM1_ESM.doc (1.7 mb)
Supplementary material 1 (DOC 1724 kb)

References

  1. 1.
    Goodenough JB, Park K-S (2013) The Li-ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  3. 3.
    Wang F, Wang J, Ren H, Tang H, Yu R, Wang D (2016) Multi-shelled LiMn2O4 hollow microspheres as superior cathode materials for lithium-ion batteries. Inorg Chem Front 3:365–369CrossRefGoogle Scholar
  4. 4.
    Costa CM, Nunes-Pereira J, Sencadas V, Silva MM, Lanceros-Méndez S (2013) Effect of fiber orientation in gelled poly (vinylidene fluoride) electrospun membranes for Li-ion battery applications. J Mater Sci 48:6833–6840.  https://doi.org/10.1007/s10853-013-7489-0 CrossRefGoogle Scholar
  5. 5.
    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958CrossRefGoogle Scholar
  6. 6.
    You Y, Wu X-L, Yin Y-X, Guo Y-G (2013) A zero-strain insertion cathode material of nickel ferricyanide for sodium-ion batteries. J Mater Chem A 1:14061–14065CrossRefGoogle Scholar
  7. 7.
    Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Sodium ion batteries: free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater.  https://doi.org/10.1002/aenm.201502217 Google Scholar
  8. 8.
    Yuan S, Huang XL, Ma DL, Wang HG, Meng FZ, Zhang XB (2014) Engraving copper foil to give large-scale binder-free porous Cuo arrays for a high-performance sodium-ion battery anode. Adv Mater 26:2273–2279CrossRefGoogle Scholar
  9. 9.
    Chen J, Liu Y, Li W, Wu C, Xu L, Yang H (2015) Nanostructured polystyrene/polyaniline/graphene hybrid materials for electrochemical supercapacitor and Na-ion battery applications. J Mater Sci 50:5466–5474.  https://doi.org/10.1007/s10853-015-9092-z CrossRefGoogle Scholar
  10. 10.
    Kubota K, Asari T, Yoshida H, Yaabuuchi N, Shiiba H, Nakayama M, Komaba S (2016) Understanding the structural evolution and redox mechanism of a NaFeO2–NaCoO2 solid solution for sodium-ion batteries. Adv Funct Mater.  https://doi.org/10.1002/adfm.201601292 Google Scholar
  11. 11.
    Wang PF, You Y, Yin YX, Wang YS, Wan LJ, Gu L, Guo YG (2016) Suppressing the P2–O2 phase transition of Na0. 67Mn0. 67Ni0. 33O2 by magnesium substitution for improved sodium-ion batteries. Angew Chem Int Ed 128:7571–7575CrossRefGoogle Scholar
  12. 12.
    Fang Y, Xiao L, Ai X, Cao Y, Yang H (2015) Hierarchical carbon framework wrapped Na3V2(PO4)3 as a superior high-rate and extended lifespan cathode for sodium-ion batteries. Adv Mater 27:5895–5900CrossRefGoogle Scholar
  13. 13.
    Zhu C, Song K, Van Aken PA, Maier J, Yu Y (2014) Carbon-Coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast na-storage cathode with the potential of outperforming Li cathodes. Nano Lett 14:2175–2180CrossRefGoogle Scholar
  14. 14.
    Wang H, Liao X-Z, Yang Y, Yan X, He Y-S, Ma Z-F (2016) Large-scale synthesis of NaNi1/3Fe1/3Mn1/3O2 as high performance cathode materials for sodium ion batteries. J Electrochem Soc 163:A565–A570CrossRefGoogle Scholar
  15. 15.
    You Y, Yao HR, Xin S, Yin YX, Zuo TT, Yang CP, Guo YG, Cui Y, Wan LJ, Goodenough JB (2016) Subzero-temperature cathode for a sodium-ion battery. Adv Mater.  https://doi.org/10.1002/adma.201600846 Google Scholar
  16. 16.
    Zheng Q, Yi H, Liu W, Li X, Zhang H (2017) Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization. Electrochim Acta 238:288–297CrossRefGoogle Scholar
  17. 17.
    Chao D, Zhu C, Xia X, Liu J, Zhang X, Wang J, Liang P, Lin J, Zhang H, Shen ZX, Fan HJ (2015) Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries. Nano Lett 15:565–573CrossRefGoogle Scholar
  18. 18.
    Balogun M-S, Luo Y, Lyu F, Wang F, Yang H, Li H, Liang C, Huang M, Huang Y, Tong Y (2016) Carbon quantum dot surface-engineered VO2 interwoven nanowires: a flexible cathode material for lithium and sodium ion batteries. ACS Appl Mater Interfaces 8:9733–9744CrossRefGoogle Scholar
  19. 19.
    Li L, Seng KH, Li D, Xia Y, Liu HK, Guo Z (2014) SnSb@Carbon nanocable anchored on graphene sheets for sodium ion batteries. Nano Res 7:1466–1476CrossRefGoogle Scholar
  20. 20.
    Wang Y, Yu X, Xu S, Bai J, Xiao R, Hu Y-S, Li H, Yang X-Q, Chen L, Huang X (2013) A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nat Commun.  https://doi.org/10.1038/ncomms3365 Google Scholar
  21. 21.
    Stevens D, Dahn J (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRefGoogle Scholar
  22. 22.
    Xu G, Li Z, Wei X, Yang L, Chu PK (2017) Monolithic hierarchical carbon assemblies embedded with mesoporous NaTi2(PO4)3 nanocrystals for flexible high-performance sodium anodes. Electrochim Acta 254:328–336CrossRefGoogle Scholar
  23. 23.
    Li M, Liu L, Wang P, Li J, Leng Q, Cao G (2017) Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim Acta 252:523–531CrossRefGoogle Scholar
  24. 24.
    Zhao G, Zou G, Qiu X, Li S, Guo T, Hou H, Ji X (2017) Rose-like N-Doped porous carbon for advanced sodium storage. Electrochim Acta 240:24–30CrossRefGoogle Scholar
  25. 25.
    Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634CrossRefGoogle Scholar
  26. 26.
    Zhang N, Liu Y, Lu Y, Han X, Cheng F, Chen J (2015) Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Res 8:3384–3393CrossRefGoogle Scholar
  27. 27.
    Roh H-K, Kim H-K, Kim M-S, Kim D-H, Chung KY, Roh KC, Kim K-B (2016) In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res 9:1844–1855CrossRefGoogle Scholar
  28. 28.
    Balogun M-S, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRefGoogle Scholar
  29. 29.
    Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ion 28:1172–1175CrossRefGoogle Scholar
  30. 30.
    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  31. 31.
    Winter M, Besenhard JO, Spahr ME, Novak P (1998) Insertion electrode materials for rechargeable lithium batteries. Adv Mater 10:725–763CrossRefGoogle Scholar
  32. 32.
    Pan H, Hu Y-S, Chen L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6:2338–2360CrossRefGoogle Scholar
  33. 33.
    Wu X-L, Liu Q, Guo Y-G, Song W-G (2009) Superior storage performance of carbon nanosprings as anode materials for lithium-ion batteries. Electrochem Commun 11:1468–1471CrossRefGoogle Scholar
  34. 34.
    Yang S, Feng X, Zhi L, Cao Q, Maier J, Müllen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22:838–842CrossRefGoogle Scholar
  35. 35.
    Yan Y, Yin YX, Guo YG, Wan LJ (2014) A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energy Mater.  https://doi.org/10.1002/aenm.201301584 Google Scholar
  36. 36.
    Li W, Zhou M, Li H, Wang K, Cheng S, Jiang K (2015) A high performance sulfur-doped disordered carbon anode for sodium ion batteries. Energy Environ Sci 8:2916–2921CrossRefGoogle Scholar
  37. 37.
    Ye H, Xin S, Yin Y-X, Li J-Y, Guo Y-G, Wan L-J (2017) Stable Li plating/stripping electrochemistry realized by a hybrid li reservoir in spherical carbon granules with 3D conducting skeletons. J Am Chem Soc 139:5916–5922CrossRefGoogle Scholar
  38. 38.
    Tang K, Fu L, White RJ, Yu L, Titirici MM, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRefGoogle Scholar
  39. 39.
    Zhou X, Guo YG (2014) Highly disordered carbon as a superior anode material for room-temperature sodium-ion batteries. ChemElectroChem 1:83–86CrossRefGoogle Scholar
  40. 40.
    Dahn JR, Zheng T, Liu Y, Xue J (1995) Mechanisms for lithium insertion in carbonaceous materials. Science 270:590CrossRefGoogle Scholar
  41. 41.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104:4303–4418CrossRefGoogle Scholar
  42. 42.
    Hardwick LJ, Ruch PW, Hahn M, Scheifele W, Kötz R, Novák P (2008) In situ raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: first cycle effects. J Phys Chem Solids 69:1232–1237CrossRefGoogle Scholar
  43. 43.
    Komaba S, Murata W, Ishikawa T, Yabuuchi N, Ozeki T, Nakayama T, Ogata A, Gotoh K, Fujiwara K (2011) Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv Funct Mater 21:3859–3867CrossRefGoogle Scholar
  44. 44.
    Alcántara R, Lavela P, Ortiz GF, Tirado JL (2005) Carbon microspheres obtained from resorcinol–formaldehyde as high-capacity electrodes for sodium-ion batteries. Electrochem Solid State Lett 8:A222–A225CrossRefGoogle Scholar
  45. 45.
    Bessada C, Anghel EM (2003) 11B, 23Na, 27Al, and 19F NMR study of solid and molten Na3AlF6–Na2B4O7. Inorg Chem 42:3884–3890CrossRefGoogle Scholar
  46. 46.
    Gotoh K, Ishikawa T, Shimadzu S, Yabuuchi N, Komaba S, Takeda K, Goto A, Deguchi K, Ohki S, Hashi K (2013) NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery. J Power Sour 225:137–140CrossRefGoogle Scholar
  47. 47.
    Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun.  https://doi.org/10.1038/ncomms7362 Google Scholar
  48. 48.
    Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148:405–416CrossRefGoogle Scholar
  49. 49.
    Aurbach D (2000) Review of selected electrode-solution interactions which determine the performance of Li and Li ion batteries. J Power Sour 89:206–218CrossRefGoogle Scholar
  50. 50.
    Ye H, Yin Y-X, Zhang S-F, Shi Y, Liu L, Zeng X-X, Wen R, Guo Y-G, Wan L-J (2017) Synergism of Al-containing solid electrolyte interphase layer and Al-based colloidal particles for stable lithium anode. Nano Energy 36:411–417CrossRefGoogle Scholar
  51. 51.
    Yan K, Lee HW, Gao T, Zheng G, Yao H, Wang H, Lu Z, Zhou Y, Liang Z, Liu Z, Chu S, Cui Y (2014) Ultrathin two-dimensional atomic crystals as stable interfacial layer for improvement of lithium metal anode. Nano Lett 14:6016–6022CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and EngineeringHubei UniversityWuhanPeople’s Republic of China
  2. 2.College of ScienceHuazhong Agricultural UniversityWuhanPeople’s Republic of China

Personalised recommendations