Advertisement

Journal of Materials Science

, Volume 53, Issue 17, pp 12178–12189 | Cite as

Microwave energy-based manufacturing of hollow carbon nanospheres decorated with carbon nanotubes or metal oxide nanowires

  • Selcuk Poyraz
  • Jonathan Cook
  • Zhen Liu
  • Lin Zhang
  • Amit Nautiyal
  • Britta Hohmann
  • Solveig Klamt
  • Xinyu Zhang
Composites
  • 24 Downloads

ABSTRACT

Nanostructured hollow carbon spheres (HCNSs), with either carbon nanotube (CNT) or metal oxide nanowire (MONW) decoration on their surface, were synthesized as building materials with a great potential for the next-generation advanced applications. A well-established, polymeric latex NS synthesis method and a simply modified version of a microwave (MW) energy-based carbonization approach, i.e., Poptube, were systematically combined to obtain these HCNSs. Through this simple, facile, affordable and easily scalable “combined synthesis method,” it was managed to successfully produce HCNSs with unique morphological, spectroscopic, thermal and elemental features, all of which were strongly supported by both various material characterization test results and the relevant previous literature data. Thus, it is believed that the as-synthesized CNT or MONW decorated HCNSs (CNT-MONW/HCNS) from the above-mentioned method would soon become the materials of preference for the next-generation advanced applications in various science and engineering fields.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from USDA-NIFA and Namik Kemal University scientific research award NKUBAP.00.17.AR.15.04.

References

  1. 1.
    Lou XW, Archer LA, Yang ZC (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019CrossRefGoogle Scholar
  2. 2.
    Kim M, Sohn K, Bin Na H, Hyeon T (2002) Synthesis of nanorattles composed of gold nanoparticles encapsulated in mesoporous carbon and polymer shells. Nano Lett 2:1383–1387CrossRefGoogle Scholar
  3. 3.
    Kamata K, Lu Y, Xia YN (2003) Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. J Am Chem Soc 125:2384–2385CrossRefGoogle Scholar
  4. 4.
    Liu N, Wu H, McDowell MT, Yao Y, Wang CM, Cui Y (2012) A yolk–shell design for stabilized and scalable Li-ion battery alloy anodes. Nano Lett 12:3315–3321CrossRefGoogle Scholar
  5. 5.
    Zheng GY, Zhang QF, Cha JJ, Yang Y, Li WY, Seh ZW et al (2013) Amphiphilic surface modification of hollow carbon nanofibers for improved cycle life of lithium sulfur batteries. Nano Lett 13:1265–1270CrossRefGoogle Scholar
  6. 6.
    Ikeda S, Ishino S, Harada T, Okamoto N, Sakata T, Mori H et al (2006) Ligand-free platinum nanoparticles encapsulated in a hollow porous carbon shell as a highly active heterogeneous hydrogenation catalyst. Angew Chem Int Ed 45:7063–7066CrossRefGoogle Scholar
  7. 7.
    Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG et al (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165CrossRefGoogle Scholar
  8. 8.
    Liu Z, Chen L, Zhang L, Poyraz S, Guo ZH, Zhang XY et al (2014) Ultrafast Cr(VI) removal from polluted water by microwave synthesized iron oxide submicron wires. Chem Commun 50:8036–8039CrossRefGoogle Scholar
  9. 9.
    Fuertes AB, Sevilla M, Valdes-Solis T, Tartaj P (2007) Synthetic route to nanocomposites made up of inorganic nanoparticles confined within a hollow mesoporous carbon shell. Chem Mater 19:5418–5423CrossRefGoogle Scholar
  10. 10.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries. Angew Chem Int Ed 50:5904–5908CrossRefGoogle Scholar
  11. 11.
    Yang SB, Feng XL, Zhi LJ, Cao QA, Maier J, Mullen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22:838–842CrossRefGoogle Scholar
  12. 12.
    Zhang CF, Wu HB, Yuan CZ, Guo ZP, Lou XW (2012) Confining sulfur in double-shelled hollow carbon spheres for lithium-sulfur batteries. Angew Chem Int Ed 51:9592–9595CrossRefGoogle Scholar
  13. 13.
    Caruso F, Spasova M, Susha A, Giersig M, Caruso RA (2001) Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach. Chem Mater 13:109–116CrossRefGoogle Scholar
  14. 14.
    Jang J, Ha H (2003) Fabrication of carbon nanocapsules using PNMA/PDVB core/shell nanoparticles. Chem Mater 15:2109–2111CrossRefGoogle Scholar
  15. 15.
    Lu AH, Li WC, Hao GP, Spliethoff B, Bongard HJ, Schaack BB et al (2010) Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew Chem Int Ed 49:1615–1618CrossRefGoogle Scholar
  16. 16.
    Wang ZF, Mao PF, He NY (2006) Synthesis and characteristics of carbon encapsulated magnetic nanoparticles produced by a hydrothermal reaction. Carbon 44:3277–3284CrossRefGoogle Scholar
  17. 17.
    Qiao SZ, Lin CX, Jin YG, Li Z, Yan ZM, Hao ZP et al (2009) Surface-functionalized periodic mesoporous organosilica hollow spheres. J Phys Chem C 113:8673–8682CrossRefGoogle Scholar
  18. 18.
    Xu LQ, Zhang WQ, Yang Q, Ding YW, Yu WC, Qian YT (2005) A novel route to hollow and solid carbon spheres. Carbon 43:1090–1092CrossRefGoogle Scholar
  19. 19.
    Katcho NA, Urones-Garrote E, Avila-Brande D, Gomez-Herrero A, Urbonaite S, Csillag S et al (2007) Carbon hollow nanospheres from chlorination of ferrocene. Chem Mater 19:2304–2309CrossRefGoogle Scholar
  20. 20.
    Zhang XY, Manohar SK (2006) Microwave synthesis of nanocarbons from conducting polymers. Chem Commun 23:2477–2479CrossRefGoogle Scholar
  21. 21.
    Fujii S, Matsuzawa S, Nakamura Y (2010) One-pot synthesis of conducting polymer-coated latex particles: ammonium persulfate as free radical initiator and chemical oxidant. Chem Commun 46:7217–7219CrossRefGoogle Scholar
  22. 22.
    Poyraz S, Flogel M, Liu Z, Zhang XY (2017) Microwave energy assisted carbonization of nanostructured conducting polymers for their potential use in energy storage applications. Pure Appl Chem 89:173–182CrossRefGoogle Scholar
  23. 23.
    Zhang L, Du W, Nautiyal A, Liu Z, Zhang XY (2018) Recent progress on nanostructured conducting polymers and composites: synthesis, application and future aspects. Sci China Mater 61:303–352CrossRefGoogle Scholar
  24. 24.
    Zhang JR, Qiu T, Ren SS, Yuan HF, He LF, Li XY (2012) Simple synthesis of polypyrrole-polystyrene hybrid hollow spheres. Mater Chem Phys 134:1072–1078CrossRefGoogle Scholar
  25. 25.
    Chang CH, Son PS, Yoon JA, Choi SH (2010) Synthesis of hollow conductive polypyrrole balls by the functionalized polystyrene as template. J Nanomater 168025:1–6CrossRefGoogle Scholar
  26. 26.
    Fu JW, Xu Q, Chen JF, Chen ZM, Huang XB, Tang XZ (2010) Controlled fabrication of uniform hollow core porous shell carbon spheres by the pyrolysis of core/shell polystyrene/cross-linked polyphosphazene composites. Chem Commun 46:6563–6565CrossRefGoogle Scholar
  27. 27.
    Fang B, Kim JH, Kim MS, Bonakdarpour A, Lam A, Wilkinson DP et al (2012) Fabrication of hollow core carbon spheres with hierarchical nanoarchitecture for ultrahigh electrical charge storage. J Mater Chem 22:19031–19038CrossRefGoogle Scholar
  28. 28.
    Liu Z, Zhang L, Poyraz S, Smith J, Kushvaha V, Tippur H et al (2014) An ultrafast microwave approach towards multicomponent and multi-dimensional nanomaterials. RSC Adv 4:9308–9313CrossRefGoogle Scholar
  29. 29.
    Fujii S, Matsuzawa S, Nakamura Y, Ohtaka A, Teratani T, Akamatsu K et al (2010) Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media. Langmuir 26:6230–6239CrossRefGoogle Scholar
  30. 30.
    Malinauskas A (2001) Chemical deposition of conducting polymers. Polymer 42:3957–3972CrossRefGoogle Scholar
  31. 31.
    Cho SH, Kim WY, Jeong GK, Lee YS (2005) Synthesis of nano-sized polypyrrole-coated polystyrene latexes. Colloids Surf A Physicochem Eng Asp 255:79–83CrossRefGoogle Scholar
  32. 32.
    Liu Z, Liu Y, Poyraz S, Zhang XY (2011) Green-nano approach to nanostructured polypyrrole. Chem Commun 47:4421–4423CrossRefGoogle Scholar
  33. 33.
    Zhang XY, Manohar SK (2004) Bulk synthesis of polypyrrole nanofibers by a seeding approach. J Am Chem Soc 126:12714–12715CrossRefGoogle Scholar
  34. 34.
    Zhang XY, Manohar SK (2005) Narrow pore-diameter polypyrrole nanotubes. J Am Chem Soc 127:14156–14157CrossRefGoogle Scholar
  35. 35.
    Liu Z, Zhang XY, Poyraz S, Surwade SP, Manohar SK (2010) Oxidative template for conducting polymer nanoclips. J Am Chem Soc 132:13158–13159CrossRefGoogle Scholar
  36. 36.
    Liu Z, Wang JL, Kushvaha V, Poyraz S, Tippur H, Park S et al (2011) Poptube approach for ultrafast carbon nanotube growth. Chem Commun 47:9912–9914CrossRefGoogle Scholar
  37. 37.
    Zhang XY, Liu Z (2012) Recent advances in microwave initiated synthesis of nanocarbon materials. Nanoscale 4:707–714CrossRefGoogle Scholar
  38. 38.
    Hulicova D, Kodama M, Hatori H (2006) Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem Mater 18:2318–2326CrossRefGoogle Scholar
  39. 39.
    Liu Z, Zhang L, Poyraz S, Zhang XY (2013) Conducting polymer—metal nanocomposites synthesis and their sensory applications. Curr Org Chem 17:2256–2267CrossRefGoogle Scholar
  40. 40.
    Hu CC, Chang KH, Lin MC, Wu YT (2006) Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett 6:2690–2695CrossRefGoogle Scholar
  41. 41.
    Zhang LL, Li S, Zhang JT, Guo PZ, Zheng JT, Zhao XS (2010) Enhancement of electrochemical performance of macroporous carbon by surface coating of polyaniline. Chem Mater 22:1195–1202CrossRefGoogle Scholar
  42. 42.
    Kelly TL, Yano K, Wolf MO (2009) Supercapacitive properties of PEDOT and carbon colloidal microspheres. ACS Appl Mater Interfaces 1:2536–2543CrossRefGoogle Scholar
  43. 43.
    Lei ZB, Chen ZW, Zhao XS (2010) Growth of polyaniline on hollow carbon spheres for enhancing electrocapacitance. J Phys Chem C 114:19867–19874CrossRefGoogle Scholar
  44. 44.
    Chen Z, Qin YC, Weng D, Xiao QF, Peng YT, Wang XL et al (2009) Design and synthesis of hierarchical nanowire composites for electrochemical energy storage. Adv Func Mater 19:3420–3426CrossRefGoogle Scholar
  45. 45.
    Yang SB, Feng XL, Ivanovici S, Mullen K (2010) Fabrication of graphene-encapsulated oxide nanoparticles: towards high-performance anode materials for lithium storage. Angew Chem Int Ed 49:8408–8411CrossRefGoogle Scholar
  46. 46.
    Lai XY, Halpert JE, Wang D (2012) Recent advances in micro-/nano-structured hollow spheres for energy applications: from simple to complex systems. Energy Environ Sci 5:5604–5618CrossRefGoogle Scholar
  47. 47.
    Kang LT, Xie LL, Li PY, Liu TJ, Zhang XY, Luo JJ et al (2015) One-step combustion synthesis of CNTs doped Fe2O3/C nanocomposites as electrode materials for supercapacitors. Fuller Nanotubes Carbon Nanostruct 23:715–720CrossRefGoogle Scholar
  48. 48.
    Raymundo-Pinero E, Cadek M, Beguin F (2009) Tuning carbon materials for supercapacitors by direct pyrolysis of seaweeds. Adv Func Mater 19:1032–1039CrossRefGoogle Scholar
  49. 49.
    Zhenxing H, Xiaowei Y, Junliang L, Yuping Y, Ling W, Yanwei Z (2011) An Investigation of the effect of sodium dodecyl sulfate on quasi-emulsifier-free emulsion polymerization for highly monodisperse polystyrene nanospheres. Eur Polymer J 47:24–30CrossRefGoogle Scholar
  50. 50.
    Poyraz S, Zhang L, Schroder A, Zhang XY (2015) Ultrafast microwave welding/reinforcing approach at the interface of thermoplastic materials. ACS Appl Mater Interfaces 7:22469–22477CrossRefGoogle Scholar
  51. 51.
    Poyraz S, Liu Z, Liu Y, Zhang XY (2013) Devulcanization of scrap ground tire rubber and successive carbon nanotube growth by microwave irradiation. Curr Org Chem 17:2243–2248CrossRefGoogle Scholar
  52. 52.
    Xie H, Poyraz S, Thu M, Liu Y, Snyder EY, Smith JW et al (2014) Microwave-assisted fabrication of carbon nanotubes decorated polymeric nano-medical platforms for simultaneous drug delivery and magnetic resonance imaging. RSC Adv 4:5649–5652CrossRefGoogle Scholar
  53. 53.
    Liu Z, Zhang L, Wang RG, Poyraz S, Cook J, Bozack MJ et al (2016) Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Sci Rep 6:22503–22510CrossRefGoogle Scholar
  54. 54.
    Schwenke AM, Hoeppener S, Schubert US (2015) Synthesis and modification of carbon nanomaterials utilizing microwave heating. Adv Mater 27:4113–4141CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringAuburn UniversityAuburnUSA
  2. 2.Department of Textile Engineering, Faculty of EngineeringAdiyaman UniversityAltinsehir, AdiyamanTurkey
  3. 3.Department of Physics and EngineeringFrostburg State UniversityFrostburgUSA
  4. 4.Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations