Journal of Materials Science

, Volume 53, Issue 17, pp 12265–12283 | Cite as

Controlling the morphology and size of (Gd0.98−xTb0.02Eu x )2O3 phosphors presenting tunable emission: formation process and luminescent properties

Electronic materials
  • 16 Downloads

Abstract

The (Gd0.98−xTb0.02Eu x )2O3 phosphors have been successfully obtained using the urea-based homogeneous precipitation method in the present work. The particle growth of the precursors with mono-dispersion spherical morphology is surface-diffusion controlled and precipitated in the order of the Tb(OH)CO3 > Gd(OH)CO3 > Eu(OH)CO3, and the formation process has been also studied in detail. Partially replacing the pure water with ethylene glycol (EG) can control the particle size and morphology owing to its lower permittivity constant and interface energy. By monitoring the excitation at 314 nm (4f8 → 4f75d1 transition of Tb3+), the (Gd0.98−xTb0.02Eu x )2O3 phosphors exhibit both Tb3+ (green) and Eu3+ (red) emissions at 547 and 613 nm, respectively. The presence of Gd3+ and Tb3+ excitation bands on the PLE spectra by monitoring the Eu3+ emission directly provides an evidence of the Tb3+ → Eu3+ and Gd3+ → Eu3+ energy transfer, respectively. The quenching concentration is determined to be 2.0 at.%, and the quenching mechanism is determined to be the exchange reaction between Eu3+. The emission color can be readily tuned from approximately green to red via adjusting the Eu3+ content. The temperature-dependent analysis has been performed, and the results indicate that the (Gd0.98−xTb0.02Eu x )2O3 samples possess good thermal stability. Owing to the Tb3+ → Eu3+ energy transfer, the lifetime for the Tb3+ emission rapidly decreases, and the energy transfer efficiency has been calculated. The EG addition does not bring appreciable changes to the lifetime values for the both Tb3+ and Eu3+ emissions, but enhances remarkably the luminescent intensity which confirms the variation of the particle morphology/size, and the reason can be explained by the scattering of the light. The (Gd0.98−xTb0.02Eu x )2O3 phosphors developed in this work hopefully meet the requirements of various lighting and optical display applications.

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 51402125), China Postdoctoral Science Foundation (No. 2017M612175), the Natural Science Foundation of Shandong Province (Grant No. ZR2016QL004), the Special Fund for the Postdoctoral Innovation Project of Shandong Province (Grant No. 201603061), the Research Fund for the Post Doctorate Project of University of Jinan (No. XBH1607), the Research Fund for the Doctoral Program of University of Jinan (Grant No. XBS1447), the Natural Science Foundation of University of Jinan (Grant No. XKY1515).

Supplementary material

10853_2018_2505_MOESM1_ESM.doc (5.1 mb)
Supplementary material 1 (DOC 5261 kb)

References

  1. 1.
    Sobral GA, Gomes MA, Avila JFM, Rodrigues JJ Jr, Macedo ZS, Hickmann JM, Alencar MARC (2016) Tailoring red-green-blue emission from Er3+, Eu3+ and Tb3+ doped Y2O3 nanocrystals produced via PVA-assisted sol-gel route. J Phys Chem Solids 98:81–89CrossRefGoogle Scholar
  2. 2.
    Selvalakshmi T, Sellaiyan S, Uedono A, Bose AC (2014) Investigation of defect related photoluminescence property of multicolour emitting Gd2O3:Dy3+ phosphor. RSC Adv 4:34257–34266CrossRefGoogle Scholar
  3. 3.
    Kumar JBP, Ramgopal G, Vidya YS, Anantharaju KS, Prasad BD, Sharma SC, Prashantha SC, Nagaswarupa HP, Kavyashree D, Nagabhushana H (2015) Green synthesis of Y2O3:Dy3+ nanophosphor with enhanced photocatalytic activity. Spectrochim Acta Pt A Mol Biol 149:687–697CrossRefGoogle Scholar
  4. 4.
    Bedekar V, Dutta DP, Mohapatra M, Godbole SV, Ghildiyal R, Tyagi AK (2009) Rare-earth doped gadolinia based phosphors for potential multicolor and white light emitting deep UV LEDs. Nanotechnology 20:125707CrossRefGoogle Scholar
  5. 5.
    Fulmek P, Nicolics J, Nemitz W, Wenzl FP (2017) On the impact of the temperature dependency of the phosphor quantum efficiency on correlated color temperature stability in phosphor converted LEDs. Mater Chem Phys 196:82–91CrossRefGoogle Scholar
  6. 6.
    Iqbal F, Kim S, Kim H (2017) Degradation of phosphor-in-glass encapsulants with various phosphor types for high power LEDs. Opt Mater 72:323–329CrossRefGoogle Scholar
  7. 7.
    Meza O, Villabona E, Diaz-Torres LA, Desirena H, Lopez JLR, Perez E (2014) Luminescence concentration quenching mechanism in Gd2O3:Eu3+. J Phys Chem A 118:1390–1396CrossRefGoogle Scholar
  8. 8.
    Thongtem T, Phuruangrat A, Ham DJ, Lee JS, Thongtem S (2010) Controlled Gd2O3 nanorods and nanotubes by the annealing of Gd(OH)3 nanorod and nanotube precursors and self-templates produced by a microwave-assisted hydrothermal process. CrystEngComm 12:2962–2966CrossRefGoogle Scholar
  9. 9.
    Seo S, Yang H, Holloway PH (2009) Controlled shape growth of Eu- or Tb-doped luminescent Gd2O3 colloidal nanocrystals. J Colloid Interface Sci 331:236–242CrossRefGoogle Scholar
  10. 10.
    Kim WJ, Gwag JS, Kang JG, Sohn Y (2014) Photoluminescence imaging of Eu(III), Eu(III)/Ag, Eu(III)/Tb(III), and Eu(III)/Tb(III)/Ag-doped Gd(OH)3 and Gd2O3 nanorods. Ceram Int 40:12035–12044CrossRefGoogle Scholar
  11. 11.
    Li F, Liu H, Wei S, Suni W, Yu L (2013) Photoluminescent properties of Eu3+ and Tb3+ codoped Gd2O3 nanowires and bulk materials. J Rare Earth 31:1063–1068CrossRefGoogle Scholar
  12. 12.
    Yang L, Zhou LQ, Huang Y, Tang ZW (2011) Controlled synthesis of different morphologies of Gd2O3:Eu3+ crystals and shape-dependent luminescence properties. Mater Chem Phys 131:477–484CrossRefGoogle Scholar
  13. 13.
    Raleaooa PV, Roodt A, Mhlongo GG, Motaung DE, Ntwaeaborw OM (2018) Analysis of the structure, particle morphology and photoluminescent properties of ZnS:Mn2+ nanoparticulate phosphors. Optik 153:31–42CrossRefGoogle Scholar
  14. 14.
    Ding W, Liang P, Liu ZH (2017) Luminescence properties in relation to controllable morphologies of the InBO3:Eu3+ phosphor. Mater Res Bull 94:31–37CrossRefGoogle Scholar
  15. 15.
    Li JG, Li X, Sun X, Ishigaki T (2008) Monodispersed colloidal spheres for uniform Y2O3:Eu3+ red-phosphor particles and greatly enhanced luminescence by simultaneous Gd3+ doping. J Phys Chem C 112:11707–11716CrossRefGoogle Scholar
  16. 16.
    Park IY, Kima D, Lee J, Lee SH, Kim KJ (2007) Effects of urea concentration and reaction temperature on morphology of gadolinium compounds prepared by homogeneous precipitation. Mater Chem Phys 106:149–157CrossRefGoogle Scholar
  17. 17.
    Teng X, Li J, Duan G, Liu Z (2016) Development of Tb3+ activated gadolinium aluminate garnet (Gd3Al5O12) as highly efficient green-emitting phosphors. J Lumin 179:165–170CrossRefGoogle Scholar
  18. 18.
    Zhang JW, Zhu PL, Li JH, Chen JM, Wu ZH, Zhang ZJ (2009) Fabrication of octahedral-shaped polyol-based zinc alkoxide particles and their conversion to octahedral polycrystalline ZnO or single-crystal ZnO nanoparticles. Cryst Growth Des 9:2329–2334CrossRefGoogle Scholar
  19. 19.
    Dai SH, Liu YF, Lu YN, Min HH (2010) Microwave solvothermal synthesis of Eu3+-doped (Y, Gd)2O3 microsheets. Powder Technol 202:178–184CrossRefGoogle Scholar
  20. 20.
    Teng X, Wang W, Cao Z, Li J, Duan G, Liu Z (2017) The development of new phosphors of Tb3+/Eu3+ co-doped Gd3Al5O12 with tunable emission. Opt Mater 69:175–180CrossRefGoogle Scholar
  21. 21.
    Mukhergee ST, Sudarsan V, Sastry PU, Patra AK, Tyagi AK (2012) Annealing effects on the microstructure of combustion synthesized Eu3+ and Tb3+ doped Y2O3 nanoparticles. J Alloys Compd 519:9–14CrossRefGoogle Scholar
  22. 22.
    Yang J, Li CX, Quan ZW, Zhang CM, Yang PP, Li YY, Yu CC, Lin J (2008) Self-assembled 3D flowerlike Lu2O3 and Lu2O3:Ln3+ (Ln = Eu, Tb, Dy, Pr, Sm, Er, Ho, Tm) microarchitectures: ethylene glycol-mediated hydrothermal synthesis and luminescent properties. J Phys Chem C 112:12777–12785CrossRefGoogle Scholar
  23. 23.
    Li J, Li JG, Zhang Z, Wu X, Liu S, Li X, Sun X, Sakka Y (2012) Effective lattice stabilization of gadolinium aluminate garnet (GdAG) via Lu3+ doping and development of highly efficient (Gd,Lu)AG:Eu3+ red phosphors. Sci Technol Adv Mater 13:035007CrossRefGoogle Scholar
  24. 24.
    Li JG, Li JK, Zhu Q, Wang X, Li X, Sun X, Sakka Y (2015) Photoluminescent and cathodoluminescent performances of Tb3+ in Lu3+-stabilized gadolinium aluminate garnet solid-solutions of [(Gd1−xLux)1–yTby]3Al5O12. RSC Adv 5:59686–59695CrossRefGoogle Scholar
  25. 25.
    Li S, Guo N, Liang Q, Ding Y, Zhou H, Ouyang R, Lü W (2018) Energy transfer and color tunable emission in Tb3+, Eu3+ co-doped Sr3LaNa(PO4)3F phosphors. Spectrochim Acta A 190:246–252CrossRefGoogle Scholar
  26. 26.
    Li B, Huang X, Guo H, Zeng Y (2018) Energy transfer and tunable photoluminescence of LaBWO6:Tb3+, Eu3+ phosphors for near-UV white LEDs. Dyes Pigments 150:67–72CrossRefGoogle Scholar
  27. 27.
    Gopi S, Jose SK, Sreeja E, Manasa P, Unnikrishnan NV, Joseph C, Biju PR (2017) Tunable green to red emission via Tb sensitized energy transfer in Tb/Eu codoped alkali fluoroborate glass. J Lumin 192:1288–1294CrossRefGoogle Scholar
  28. 28.
    Chen Y, Zhang K, Wang H, Ren X, Wang X (2017) Tunable light emission of amorphous Eu3+/Tb3+ co-doped MgAl-hydroxide salts depending on phase transition. J Non-Cryst Solids 478:41–49CrossRefGoogle Scholar
  29. 29.
    Allred AL (1961) Electronegativity values from thermochemical date. J Inorg Nucl Chem 17:215–221CrossRefGoogle Scholar
  30. 30.
    Li J, Teng X, Wang W, Zhao W, Liu Z (2017) Investigation on the preparation and luminescence property of (Gd1−xDyx)2O3 (x = 001–010) spherical phosphors. Ceram Int 43:10166–10173CrossRefGoogle Scholar
  31. 31.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946CrossRefGoogle Scholar
  32. 32.
    Wang W, Li J, Duan G, Zhao W, Cao B, Liu Z (2017) Morphology/size effect on the luminescence properties of the [(YxGd1−x)098Dy002]2O3 phosphor with enhanced yellow emission. J Lumin 192:1056–1064CrossRefGoogle Scholar
  33. 33.
    Lamer VK, Dinegar RH (1950) Theory, production and formation of monodispersed hydrosols. J Am Chem Soc 72:2494CrossRefGoogle Scholar
  34. 34.
    Li J, Li JG, Li X, Sun X (2016) Tb3+/Eu3+ codoping of Lu3+-stabilized Gd3Al5O12 for tunable photoluminescence via efficient energy transfer. J Alloys Compd 670:161–169CrossRefGoogle Scholar
  35. 35.
    Kang JG, Jung Y, Min BK, Sohn Y (2014) Full characterization of Eu(OH)3 and Eu2O3 nanorods. Appl Surf Sci 314:158–165CrossRefGoogle Scholar
  36. 36.
    Kang JG, Min BK, Sohn Y (2015) Synthesis and characterization of Gd(OH)3 and Gd2O3 nanorods. Ceram Int 41:1243–1248CrossRefGoogle Scholar
  37. 37.
    Arul NS, Mangalaraj D, Kim TW (2015) Photocatalytic degradation mechanisms of CeO2/Tb2O3 nanotubes. Appl Surf Sci 349:459–464CrossRefGoogle Scholar
  38. 38.
    Qu D, Xie F, Meng H, Gong L, Zhang W, Chen J, Li G, Liu P, Tong Y (2010) Preparation and characterization of nanocrystalline CeO2–Tb2O3 films obtained by electrochemical deposition method. J Phys Chem C 114:1424–1429CrossRefGoogle Scholar
  39. 39.
    Luo N, Yang C, Tian X, Xiao J, Liu J, Chen F, Zhang D, Xu D, Zhang Y, Yang G, Chen D, Li L (2014) A general top-down approach to synthesize rare earth doped-Gd2O3 nanocrystals as dualmodal contrast agents. J Mater Chem B 2(35):5891–5897CrossRefGoogle Scholar
  40. 40.
    Li JG, Zhu Q, Li X, Sun X, Sakka Y (2011) Colloidal processing of Gd2O3:Eu3+ red phosphor monospheres of tunable sizes: solvent effects on precipitation kinetics and photoluminescence properties of the oxides. Acta Mater 59:3688–3696CrossRefGoogle Scholar
  41. 41.
    Som S, Das S, Dutta S, Visser HG, Pandey MK, Kumar P, Dubeye RK, Sharma SK (2015) Synthesis of strong red emitting Y2O3:Eu3+ phosphor by potential chemical routes: comparative investigations on the structural evolutions, photometric properties and Judd-Ofelt analysis. RSC Adv 5:70887–70898CrossRefGoogle Scholar
  42. 42.
    Wang ZJ, Wang P, Zhong JP, Liang HB, Wang J (2014) Phase transformation and spectroscopic adjustment of Gd2O3:Eu3+ synthesized by hydrothermal method. J Lumin 152:172–175CrossRefGoogle Scholar
  43. 43.
    Li J, Li JG, Zhang Z, Wu X, Liu S, Li X, Sun X, Sakka Y (2012) Gadolinium aluminate garnet (Gd3Al5O12): crystal structure stabilization via lutetium doping and properties of the (Gd1−xLux)3Al5O12 solid solutions (x = 0–0.5). J Am Ceram Soc 95(5):931–936Google Scholar
  44. 44.
    Zhu Q, Li JG, Li X, Sun X (2010) Selective processing, structural characterization, and photoluminescence behaviors of single crystalline (Gd1−xEux)2O3 nanorods and nanotubes. Curr Nanosci 6(5):496–504CrossRefGoogle Scholar
  45. 45.
    Dai Q, Song H, Wang M, Bai X, Dong B, Qin R, Qu X, Zhang H (2008) Size and concentration effects on the photoluminescence of La2O2S:Eu3+ nanocrystals. J Phys Chem C 112:19399–19404CrossRefGoogle Scholar
  46. 46.
    Blasse G (1968) Energy transfer in oxidic phosphors. Phys Lett A 28:444–445CrossRefGoogle Scholar
  47. 47.
    Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850CrossRefGoogle Scholar
  48. 48.
    Reisfeld R, Greenberg E, Velapoldi R, Barnett B (1972) Luminescence quantum efficiency of Gd and Tb in borate glasses and the mechanism of ET between them. J Chem Phys 56:1698–1705CrossRefGoogle Scholar
  49. 49.
    Dexter DL, Schulman JH (1954) Theory of concentration quenching in inorganic phosphors. J Chem Phys 22:1063–1070CrossRefGoogle Scholar
  50. 50.
    Dieke GH, Crosswhite HM (1963) The spectra of the doubly and triply ionized rare earth. Appl Opt 2:675–686CrossRefGoogle Scholar
  51. 51.
    Wegh RT, Meijerink A, Lamminmaki RJ, Holsa J (2000) Extending dieke’s diagram. J Lumin 87–89:1002–1004CrossRefGoogle Scholar
  52. 52.
    Peijzel PS, Meijerink A, Wegh RT, Reid MF, Burdick GW (2005) A complete 4fn energy level diagram for all trivalent lanthanide ions. J Solid State Chem 178:448–453CrossRefGoogle Scholar
  53. 53.
    Hertle E, Chepyga L, Batentschuk M, Zigan L (2017) Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry. J Lumin 182:200–207CrossRefGoogle Scholar
  54. 54.
    Zheng JH, Cheng QJ, Wu SQ, Guo ZQ, Zhuang YX, Lu YJ, Li Y, Chen C (2015) An efficient blue-emitting Sr5(PO4)3Cl:Eu2+ phosphor for application in near-UV white light-emitting diodes. J Mater Chem C 3:11219–11227CrossRefGoogle Scholar
  55. 55.
    Mccamy CS (1992) Correlated color temperature as an explicit function of chromaticity coordinates. Color Res Appl 17:142–144CrossRefGoogle Scholar
  56. 56.
    Chen HI, Chang HY (2004) Homogeneous precipitation of cerium dioxide nanoparticles in alcohol/water mixed solvents. Colloid Surf A 242(1–3):61–69CrossRefGoogle Scholar
  57. 57.
    Yoo HS, Jang HS, Im WB, Kang JH, Jeon DY (2007) Particle size control of a monodisperse spherical Y2O3:Eu3+ phosphor and its photoluminescence properties. J Mater Res 22(7):2017–2024CrossRefGoogle Scholar
  58. 58.
    Li JG, Li X, Sun X, Ikegami T, Ishigaki T (2008) Uniform colloidal spheres for (Y1−xGdx)2O3 (x = 0–1): formation mechanism, compositional impacts, and physicochemical properties of the oxides. Chem Mater 20:2274–2281CrossRefGoogle Scholar
  59. 59.
    Jing X, Ireland T, Gibbons C, Barber DJ, Silver J, Vecht A (1999) Control of Y2O3:Eu spherical particle phosphor size, assembly properties, and performance for FED and HDTV. J Electrochem Soc 146:4654–4658CrossRefGoogle Scholar
  60. 60.
    Yoo JS, Lee JD (1997) The effects of particle size and surface recombination rate on the brightness of low-voltage phosphor. J Appl Phys 81:2810–2813CrossRefGoogle Scholar
  61. 61.
    Vila LDD, Stucchi EB, Davolos MR (1997) Preparation and characterization of uniform, spherical particles of Y2O2S and Y2O2S:Eu. J Mater Chem 7:2113–2116CrossRefGoogle Scholar
  62. 62.
    Song HW, Wang JW, Chen BJ, Peng HS, Lu SZ (2003) Size-dependent electronic transition rates in cubic nanocrystalline europium doped yttria. Chem Phys Lett 376:1–5CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringUniversity of JinanJinanChina

Personalised recommendations