Journal of Materials Science

, Volume 53, Issue 17, pp 12399–12406 | Cite as

In situ synthesis of chemically ordered primitive cubic Pt3Co nanoparticles by a spray paint drying method for hydrogen evolution reaction

  • Zhenzhi Cheng
  • Xinpei Geng
  • Leyi Chen
  • Cheng Zhang
  • Haifu Huang
  • Shaolong Tang
  • Youwei Du
Energy materials


A facile two-step method is developed for large-scale synthesis of chemically ordered Pt3Co nanoparticles (NPs) as a high-performance catalyst for hydrogen evolution reaction. Due to the NaCl-matrix as dispersing media avoids the severe aggregation during the high-temperature annealing process, the resulting Pt3Co NPs are pure and well crystallized with narrow size distribution. Furthermore, the chemically ordered Pt3Co NPs exhibit excellent HER property in acidic solution. Our methodology can be also applied to synthesis of other Pt-based NPs.



The authors acknowledge financial support by the National Key Project of Fundamental Research of China (Grant No. 2012CB932304) and the National Natural Science Foundation of China (Grant Nos. 21203037 and 11264005).

Compliance with ethical standards

Conflict of interest

The authors declared that they have no conflict of interest.


  1. 1.
    Mallouk TE (2013) Water electrolysis: divide and conquer. Nat Chem 5:362–363CrossRefGoogle Scholar
  2. 2.
    Norskov JK, Christensen CH (2006) Toward efficient hydrogen production at surfaces. Science 312(5778):1322–1323CrossRefGoogle Scholar
  3. 3.
    Joo SH, Park JY, Tsung C-K, Yamada Y, Yang P, Somorjai GA (2009) Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat Mater 8:126–131CrossRefGoogle Scholar
  4. 4.
    Yin HJ, Zhao SL, Zhao K, Muqsit A, Tang HJ, Chang L, Zhao HJ, Gao Y, Tang ZY (2015) Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun 6:6430CrossRefGoogle Scholar
  5. 5.
    Li M, Zhao Z, Cheng T, Fortunelli A, Chen C-Y, Yu R, Zhang Q, Gu L, Merinov B, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard WA III, Huang Y, Duan X (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318):1414–1419CrossRefGoogle Scholar
  6. 6.
    Xie J, Xie Y (2015) Structural engineering of electrocatalysts for the hydrogen evolution reaction: Order or disorder? ChemCatChem 7(17):2568–2580CrossRefGoogle Scholar
  7. 7.
    Zhang L, Roling LT, Wang X, Vara M, Chi M, Liu J, Choi SI, Park J, Herron JA, Xie Z, Mavrikakis M, Xia Y (2015) Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349(6246):412–416CrossRefGoogle Scholar
  8. 8.
    Zhou M, Wang H, Vara M, Hood ZD, Luo M, Yang T-H, Bao S, Chi M, Xiao P, Zhang Y, Xia Y (2016) Quantitative analysis of the reduction kinetics responsible for the one-pot synthesis of Pd–Pt bimetallic nanocrystals with different structures. J Am Chem Soc 138(37):12263–12270CrossRefGoogle Scholar
  9. 9.
    Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun S, Daimon H, Wang G, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11(3):919–926CrossRefGoogle Scholar
  10. 10.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819CrossRefGoogle Scholar
  11. 11.
    Lu S, Eid K, Ge D, Guo J, Wang L, Wang H, Gu H (2017) One-pot synthesis of PtRu nanodendrites as efficient catalysts for methanol oxidation reaction. Nanoscale 9:1033–1039CrossRefGoogle Scholar
  12. 12.
    Zhang H, Jin M, Xia Y (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049CrossRefGoogle Scholar
  13. 13.
    Liu T, Wang K, Yuan Q, Shen Z, Wang Y, Zhang Q, Wang X (2017) Monodispersed sub-5.0 nm PtCu nanoalloys as enhanced bifunctional electrocatalysts for oxygen reduction reaction and ethanol oxidation reaction. Nanoscale 9:2963–2968CrossRefGoogle Scholar
  14. 14.
    Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd–Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRefGoogle Scholar
  15. 15.
    Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735CrossRefGoogle Scholar
  16. 16.
    Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132(14):4984–4985CrossRefGoogle Scholar
  17. 17.
    Wang DL, Xin HL, Hovden R, Wang HS, Yu YC, Muller DA, DiSalvo FJ, Abruna HD (2013) Structurally ordered intermetallic platinum–cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12:81–87CrossRefGoogle Scholar
  18. 18.
    Kim J, Lee Y, Sun S (2010) Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc 132(14):4996–4997CrossRefGoogle Scholar
  19. 19.
    Wang D, Yu Y, Xin HL, Hovden R, Ercius P, Mundy JA, Chen H, Richard JH, Muller DA, DiSalvo FJ, Abruna HD (2012) Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett 12(10):5230–5238CrossRefGoogle Scholar
  20. 20.
    Hunt ST, Milina M, Alba-Rubio AC, Hendon CH, Dumesic JA, Román-Leshkov Y (2016) Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352(6288):974–978CrossRefGoogle Scholar
  21. 21.
    Wong A, Liu Q, Griffin S, Nicholls A, Regalbuto J (2017) Synthesis of ultrasmall, homogeneously alloyed, bimetallic nanoparticles on silica supports. Science 358(6369):1427–1430CrossRefGoogle Scholar
  22. 22.
    Li Q, Wu L, Wu G, Su D, Lv H, Zhang S, Zhu W, Casimir A, Zhu H, Mendoza-Garcia A, Sun S (2015) New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 15(4):2468–2473CrossRefGoogle Scholar
  23. 23.
    C-B R, Li D, Nandwana V, Poudyal N, Ding Y, Wang ZL, Zeng H, Liu JP (2016) Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv Mater 18(22):2984–2988Google Scholar
  24. 24.
    Li Q, Sun SH (2016) Recent advances in the organic solution phase synthesis of metal nanoparticles and their electrocatalysis for energy conversion reactions. Nano Energy 29:178–197CrossRefGoogle Scholar
  25. 25.
    Ding W, Li L, Xiong K, Wang Y, Li W, Nie Y, Chen S, Qi X, Wei Z (2015) Shape fixing via salt recrystallization: a morphology-controlled approach to convert nanostructured polymer to carbon nanomaterial as a highly active catalyst for oxygen reduction reaction. J Am Chem Soc 137(16):5414–5420CrossRefGoogle Scholar
  26. 26.
    Hansen M, Anderko K (1958) Constitution of binary alloys, 2nd edn. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Berg H, Cohen JB (1972) Long-range order and ordering kinetics in CoPt3. Metall Trans 3(7):1797–1805CrossRefGoogle Scholar
  28. 28.
    Xia T, Liu J, Wang S, Wang C, Sun Y, Wang R (2017) Nanomagnetic CoPt truncated octahedrons: facile synthesis, superior electrocatalytic activity and stability for methanol oxidation. J Mater Sci 60(1):57–67. Google Scholar
  29. 29.
    Zou L, Li J, Yuan T, Zhou Y, Li X, Yang H (2014) Structural transformation of carbon-supported Pt3Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Nanoscale 6(18):10686–10692CrossRefGoogle Scholar
  30. 30.
    Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) Electronic structures of Pt–Co and Pt–Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC–XPS. J Phys Chem B 110(46):23489–23496CrossRefGoogle Scholar
  31. 31.
    Lu Y, Thia L, Fisher A, C-y J, Yi SC, Wang X (2017) Octahedral PtNi nanoparticles with controlled surface structure and composition for oxygen reduction reaction. J Mater Sci 60(11):1109–1120. Google Scholar
  32. 32.
    Vasylyev MA, Tinkov VA, Blaschuk AG, Luyten J, Creemers C (2006) Thermo-stimulated surface segregation in the ordering alloy Pt80Co20 (1 1 1): experiment and modeling. Appl Surf Sci 253:1081–1089CrossRefGoogle Scholar
  33. 33.
    Murray C, Sun S, Doyle H, Betley T (2001) Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bull 26(12):985–991CrossRefGoogle Scholar
  34. 34.
    Shevchenko EV, Talapin DV, Schnablegger H, Kornowski A, Festin Ö, Svedlindh P, Haase M, Weller H (2003) Study of nucleation and growth in the organometallic synthesis of magnetic alloy nanocrystals: the role of nucleation rate in size control of CoPt3 nanocrystals. J Am Chem Soc 125(30):9090–9101CrossRefGoogle Scholar
  35. 35.
    Stamenković V, Schmidt TJ, Ross PN, Marković NM (2003) Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J Electroanal Chem 554:191–199CrossRefGoogle Scholar
  36. 36.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJ, Lucas CA, Wang G, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6:241–247CrossRefGoogle Scholar
  37. 37.
    Šipr O, Minár J, Mankovsky S, Ebert H (2008) Influence of composition, many-body effects, spin-orbit coupling, and disorder on magnetism of Co–Pt solid-state systems. Phys Rev B 78:144403CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zhenzhi Cheng
    • 1
  • Xinpei Geng
    • 1
  • Leyi Chen
    • 1
  • Cheng Zhang
    • 1
  • Haifu Huang
    • 2
  • Shaolong Tang
    • 1
  • Youwei Du
    • 1
  1. 1.Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory for Nanotechnology, Nanjing National Laboratory of Microstructures and School of PhysicsNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Guangxi Key Laboratory for Relativistic Astrophysics, Guangxi Colleges and Universities Key Laboratory of Novel Energy Materials and Related Technology, Guangxi Novel Battery Materials Research Center of Engineering Technology, Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University School of Physical Science and TechnologyGuangxi UniversityNanningPeople’s Republic of China

Personalised recommendations