Advertisement

Journal of Materials Science

, Volume 53, Issue 17, pp 12244–12253 | Cite as

TiO2/C nanocomposites prepared by thermal annealing of titanium glycerolate as anode materials for lithium-ion batteries

  • G. S. Zakharova
  • A. Ottmann
  • L. Möller
  • E. I. Andreikov
  • Z. A. Fattakhova
  • I. S. Puzyrev
  • Q. Zhu
  • E. Thauer
  • R. Klingeler
Electronic materials
  • 327 Downloads

Abstract

TiO2/C nanocomposites have been synthesized by developing a facile route based on the annealing of titanium glycerolate in inert atmosphere at 250–850 °C. X-ray diffraction studies reveal that the annealing temperature determines the crystal structure of the TiO2 phase in the compounds, which can be amorphous, anatase, and rutile. In contrast, the nanosized rod-like morphology which to a certain extent is predefined by the titanium glycerolate precursor does not depend on the annealing temperature. The carbon content of the TiO2/C composites amounts to 16–29 wt% and shows up, e.g., in the characteristic Raman D and G bands. Anatase-structured TiO2/C, which is obtained at 600 °C, exhibits the best electrochemical performance among the studied materials. Without the addition of carbon black, it reaches an initial specific discharge capacity of 378 mA h g−1 at 100 mA g−1 and exhibits excellent rate capability with a capacity of 186 mA h g−1 at 1000 mA g−1.

Notes

Acknowledgements

This work was supported by the CleanTech-Initiative of the Baden-Württemberg-Stiftung (project CT3 Nanostorage). G.S.Z acknowledges support by the Excellence Initiative of the German Federal Government. A.O. acknowledges support by the IMPRS-QD. Q.Z. acknowledges support by the National Natural Science Foundation of China (Projects 51611130056 and 51472189). The authors thank I. Glass for experimental support.

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2488_MOESM1_ESM.docx (38 kb)
Supplementary material 1 (DOCX 38 kb)

References

  1. 1.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430CrossRefGoogle Scholar
  2. 2.
    Su X, Wu Q, Zhan X et al (2012) Advanced titania nanostructures and composites for lithium ion battery. J Mater Sci 47(6):2519–2534.  https://doi.org/10.1007/s10853-011-5974-x CrossRefGoogle Scholar
  3. 3.
    Xu J, Jia C, Cao B et al (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52(28):8044–8047CrossRefGoogle Scholar
  4. 4.
    Wu F, Li X, Wang Z et al (2011) A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries. J Alloys Compd 509(8):3711–3715CrossRefGoogle Scholar
  5. 5.
    Zakharova GS, Jähne C, Popa A et al (2012) Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries. J Phys Chem C 116(15):8714–8720CrossRefGoogle Scholar
  6. 6.
    Pfanzelt M, Kubiak P, Fleischhammer M et al (2011) TiO2 rutile—an alternative anode material for safe lithium-ion batteries. J Power Sources 196(16):6815–6821CrossRefGoogle Scholar
  7. 7.
    Fei H, Wei M (2011) Facile synthesis of hierarchical nanostructured rutile titania for lithium-ion battery. Electrochim Acta 56(20):6997–7004CrossRefGoogle Scholar
  8. 8.
    Han X, Han X, Sun L et al (2016) Facile preparation of hybrid anatase/rutile TiO2 nanorods with exposed (010) facets for lithium ion batteries. Mater Chem Phys 171:11–15CrossRefGoogle Scholar
  9. 9.
    Deng D, Kim MG, Lee JY et al (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2(8):818–837CrossRefGoogle Scholar
  10. 10.
    Cao F-F, Guo Y-G, Zheng S-F et al (2010) Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem Mater 22(5):1908–1914CrossRefGoogle Scholar
  11. 11.
    Cai D, Lian P, Zhu X et al (2012) High specific capacity of TiO2-graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window. Electrochim Acta 74:65–72CrossRefGoogle Scholar
  12. 12.
    Wang D, Choi D, Li J et al (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4):907–914CrossRefGoogle Scholar
  13. 13.
    Li N, Zhou G, Fang R et al (2013) TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. Nanoscale 5(17):7780–7784CrossRefGoogle Scholar
  14. 14.
    Ren Z, Chen C, Fu X et al (2014) TiO2/C composites nanorods synthesized by internal-reflux method for lithium-ion battery anode materials. Mater Lett 117:124–127CrossRefGoogle Scholar
  15. 15.
    Yang Z, Du G, Guo Z et al (2011) TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. J Mater Chem 21(24):8591–8596CrossRefGoogle Scholar
  16. 16.
    Cheng G, Wei Y, Xiong J et al (2017) Sorbitol-employed hydrothermal carbonization to TiO2@C mesoporous hybrids with promoted visible light utilization and excellent photosensitization stability. J Alloys Compd 723:948–959CrossRefGoogle Scholar
  17. 17.
    Kang K-Y, Lee Y-G, Kim S et al (2012) Electrochemical properties of carbon-coated TiO2 nanotubes as a lithium battery anode material. Mater Chem Phys 137(1):169–176CrossRefGoogle Scholar
  18. 18.
    Shen J, Wang H, Song Y et al (2014) Amorphous carbon coated TiO2 nanocrystals embedded in a carbonaceous matrix derived from polyvinylpyrrolidone decomposition for improved Li-storage performance. Chem Eng J 240:379–386CrossRefGoogle Scholar
  19. 19.
    Cheng G, Stadler FJ (2015) Achieving phase transformation and structure control of crystalline anatase TiO2@C hybrids from titanium glycolate precursor and glucose molecules. J Colloid Interface Sci 438:169–178CrossRefGoogle Scholar
  20. 20.
    Cheng G, Xu F, Xiong J et al (2016) Enhanced adsorption and photocatalysis capability of generally synthesized TiO2-carbon materials hybrids. Adv Powder Technol 27(5):1949–1962CrossRefGoogle Scholar
  21. 21.
    Li Q, Liu B, Li Y et al (2009) Ethylene glycol-mediated synthesis of nanoporous anatase TiO2 rods and rutile TiO2 self-assembly chrysanthemums. J Alloys Compd 471(1–2):477–480CrossRefGoogle Scholar
  22. 22.
    Gan Y, Zhu L, Qin H et al (2015) Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries. Solid State Ionics 269:44–50CrossRefGoogle Scholar
  23. 23.
    Zhao J, Liu Y, Fan M et al (2015) From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials. Inorg Chem Front 2(3):198–212CrossRefGoogle Scholar
  24. 24.
    Das J, Freitas FS, Evans IR et al (2010) A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells. J Mater Chem 20(21):4425–4431CrossRefGoogle Scholar
  25. 25.
    Zakharova GS, Andreikov EI, Osipova VA et al (2013) Effect of the titanium glycerolate precursor heat treatment procedure on the morphology and photocatalytic properties of TiO2 nanopowder. Inorg Mater 49(11):1127–1132CrossRefGoogle Scholar
  26. 26.
    Weirich TE, Winterer M, Seifried S et al (2000) Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy 81(3–4):263–270CrossRefGoogle Scholar
  27. 27.
    Gonschorek W (1982) X-ray charge density study of rutile (TiO2). Z Kristallogr Cryst Mater 160(1–4):187–204CrossRefGoogle Scholar
  28. 28.
    Rouquerol J, Avnir D, Fairbridge CW et al (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66(8):1739–1758CrossRefGoogle Scholar
  29. 29.
    Preiss H, Berger L-M, Schultze D (1999) Studies on the carbothermal preparation of titanium carbide from different gel precursors. J Eur Ceram Soc 19(2):195–206CrossRefGoogle Scholar
  30. 30.
    Taziwa R, Meyer EL, Chinyama KG (2012) Raman temperature dependence analysis of carbon-doped titanium dioxide nanoparticles synthesized by ultrasonic spray pyrolysis technique. J Mater Sci 47(3):1531–1540.  https://doi.org/10.1007/s10853-011-5943-4 CrossRefGoogle Scholar
  31. 31.
    Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42(3):276–282CrossRefGoogle Scholar
  32. 32.
    Zhang H, Li F, Jia Q et al (2008) Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature. J Sol–Gel Sci Technol 46(2):217–222CrossRefGoogle Scholar
  33. 33.
    Ohzuku T, Kodama T, Hirai T (1985) Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells. J Power Sources 14(1–3):153–166CrossRefGoogle Scholar
  34. 34.
    Wagemaker M, van de Krol R, Kentgens APM et al (2001) Two phase morphology limits lithium diffusion in TiO2 (anatase): a 7Li MAS NMR study. J Am Chem Soc 123(46):11454–11461CrossRefGoogle Scholar
  35. 35.
    Subramanian V, Karki A, Gnanasekar KI et al (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources 159(1):186–192CrossRefGoogle Scholar
  36. 36.
    Reddy MA, Kishore MS, Pralong V et al (2006) Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2. Electrochem Commun 8(8):1299–1303CrossRefGoogle Scholar
  37. 37.
    Kubiak P, Pfanzelt M, Geserick J et al (2009) Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries. J Power Sources 194(2):1099–1104CrossRefGoogle Scholar
  38. 38.
    Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341CrossRefGoogle Scholar
  39. 39.
    Dahn JR, Sleigh AK, Shi H et al (1993) Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochim Acta 38(9):1179–1191CrossRefGoogle Scholar
  40. 40.
    Borghols WJH, Lützenkirchen-Hecht D, Haake U et al (2010) Lithium Storage in Amorphous TiO2 Nanoparticles. J Electrochem Soc 157(5):A582–A588CrossRefGoogle Scholar
  41. 41.
    Guo Y-G, Hu Y-S, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 417(26):2783–2785CrossRefGoogle Scholar
  42. 42.
    Chen Z, Yuan Y, Zhou H et al (2014) 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv Mater 26(2):339–345CrossRefGoogle Scholar
  43. 43.
    Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21(18):3464–3472CrossRefGoogle Scholar
  44. 44.
    Kim C, Buonsanti R, Yaylian R et al (2013) Carbon-free TiO2 battery electrodes enabled by morphological control at the nanoscale. Adv Energy Mater 3(10):1286–1291CrossRefGoogle Scholar
  45. 45.
    Liu H, Li W, Shen D et al (2015) Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. J Am Chem Soc 137(40):13161–13166CrossRefGoogle Scholar
  46. 46.
    Yang Y, Ji X, Jing M et al (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 3(10):5648–5655CrossRefGoogle Scholar
  47. 47.
    Xiu Z, Hao X, Wu Y et al (2015) Graphene-bonded and -encapsulated mesoporous TiO2 microspheres as a high-performance anode material for lithium ion batteries. J Power Sources 287:334–340CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Solid State ChemistryUral Branch of Russian Academy of SciencesYekaterinburgRussia
  2. 2.Kirchhoff Institute of PhysicsHeidelberg UniversityHeidelbergGermany
  3. 3.Postovsky Institute of Organic SynthesisUral Branch of Russian Academy of SciencesYekaterinburgRussia
  4. 4.Ural Federal UniversityYekaterinburgRussia
  5. 5.Institute of Materials Science and EngineeringWuhan University of TechnologyWuhanPeople’s Republic of China
  6. 6.Centre for Advanced MaterialsHeidelberg UniversityHeidelbergGermany

Personalised recommendations