Skip to main content
Log in

TiO2/C nanocomposites prepared by thermal annealing of titanium glycerolate as anode materials for lithium-ion batteries

  • Electronic materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

TiO2/C nanocomposites have been synthesized by developing a facile route based on the annealing of titanium glycerolate in inert atmosphere at 250–850 °C. X-ray diffraction studies reveal that the annealing temperature determines the crystal structure of the TiO2 phase in the compounds, which can be amorphous, anatase, and rutile. In contrast, the nanosized rod-like morphology which to a certain extent is predefined by the titanium glycerolate precursor does not depend on the annealing temperature. The carbon content of the TiO2/C composites amounts to 16–29 wt% and shows up, e.g., in the characteristic Raman D and G bands. Anatase-structured TiO2/C, which is obtained at 600 °C, exhibits the best electrochemical performance among the studied materials. Without the addition of carbon black, it reaches an initial specific discharge capacity of 378 mA h g−1 at 100 mA g−1 and exhibits excellent rate capability with a capacity of 186 mA h g−1 at 1000 mA g−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430

    Article  Google Scholar 

  2. Su X, Wu Q, Zhan X et al (2012) Advanced titania nanostructures and composites for lithium ion battery. J Mater Sci 47(6):2519–2534. https://doi.org/10.1007/s10853-011-5974-x

    Article  Google Scholar 

  3. Xu J, Jia C, Cao B et al (2007) Electrochemical properties of anatase TiO2 nanotubes as an anode material for lithium-ion batteries. Electrochim Acta 52(28):8044–8047

    Article  Google Scholar 

  4. Wu F, Li X, Wang Z et al (2011) A novel method to synthesize anatase TiO2 nanowires as an anode material for lithium-ion batteries. J Alloys Compd 509(8):3711–3715

    Article  Google Scholar 

  5. Zakharova GS, Jähne C, Popa A et al (2012) Anatase Nanotubes as an Electrode Material for Lithium-Ion Batteries. J Phys Chem C 116(15):8714–8720

    Article  Google Scholar 

  6. Pfanzelt M, Kubiak P, Fleischhammer M et al (2011) TiO2 rutile—an alternative anode material for safe lithium-ion batteries. J Power Sources 196(16):6815–6821

    Article  Google Scholar 

  7. Fei H, Wei M (2011) Facile synthesis of hierarchical nanostructured rutile titania for lithium-ion battery. Electrochim Acta 56(20):6997–7004

    Article  Google Scholar 

  8. Han X, Han X, Sun L et al (2016) Facile preparation of hybrid anatase/rutile TiO2 nanorods with exposed (010) facets for lithium ion batteries. Mater Chem Phys 171:11–15

    Article  Google Scholar 

  9. Deng D, Kim MG, Lee JY et al (2009) Green energy storage materials: nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ Sci 2(8):818–837

    Article  Google Scholar 

  10. Cao F-F, Guo Y-G, Zheng S-F et al (2010) Symbiotic coaxial nanocables: facile synthesis and an efficient and elegant morphological solution to the lithium storage problem. Chem Mater 22(5):1908–1914

    Article  Google Scholar 

  11. Cai D, Lian P, Zhu X et al (2012) High specific capacity of TiO2-graphene nanocomposite as an anode material for lithium-ion batteries in an enlarged potential window. Electrochim Acta 74:65–72

    Article  Google Scholar 

  12. Wang D, Choi D, Li J et al (2009) Self-assembled TiO2-graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 3(4):907–914

    Article  Google Scholar 

  13. Li N, Zhou G, Fang R et al (2013) TiO2/graphene sandwich paper as an anisotropic electrode for high rate lithium ion batteries. Nanoscale 5(17):7780–7784

    Article  Google Scholar 

  14. Ren Z, Chen C, Fu X et al (2014) TiO2/C composites nanorods synthesized by internal-reflux method for lithium-ion battery anode materials. Mater Lett 117:124–127

    Article  Google Scholar 

  15. Yang Z, Du G, Guo Z et al (2011) TiO2(B)@carbon composite nanowires as anode for lithium ion batteries with enhanced reversible capacity and cyclic performance. J Mater Chem 21(24):8591–8596

    Article  Google Scholar 

  16. Cheng G, Wei Y, Xiong J et al (2017) Sorbitol-employed hydrothermal carbonization to TiO2@C mesoporous hybrids with promoted visible light utilization and excellent photosensitization stability. J Alloys Compd 723:948–959

    Article  Google Scholar 

  17. Kang K-Y, Lee Y-G, Kim S et al (2012) Electrochemical properties of carbon-coated TiO2 nanotubes as a lithium battery anode material. Mater Chem Phys 137(1):169–176

    Article  Google Scholar 

  18. Shen J, Wang H, Song Y et al (2014) Amorphous carbon coated TiO2 nanocrystals embedded in a carbonaceous matrix derived from polyvinylpyrrolidone decomposition for improved Li-storage performance. Chem Eng J 240:379–386

    Article  Google Scholar 

  19. Cheng G, Stadler FJ (2015) Achieving phase transformation and structure control of crystalline anatase TiO2@C hybrids from titanium glycolate precursor and glucose molecules. J Colloid Interface Sci 438:169–178

    Article  Google Scholar 

  20. Cheng G, Xu F, Xiong J et al (2016) Enhanced adsorption and photocatalysis capability of generally synthesized TiO2-carbon materials hybrids. Adv Powder Technol 27(5):1949–1962

    Article  Google Scholar 

  21. Li Q, Liu B, Li Y et al (2009) Ethylene glycol-mediated synthesis of nanoporous anatase TiO2 rods and rutile TiO2 self-assembly chrysanthemums. J Alloys Compd 471(1–2):477–480

    Article  Google Scholar 

  22. Gan Y, Zhu L, Qin H et al (2015) Hybrid nanoarchitecture of rutile TiO2 nanoneedle/graphene for advanced lithium-ion batteries. Solid State Ionics 269:44–50

    Article  Google Scholar 

  23. Zhao J, Liu Y, Fan M et al (2015) From solid-state metal alkoxides to nanostructured oxides: a precursor-directed synthetic route to functional inorganic nanomaterials. Inorg Chem Front 2(3):198–212

    Article  Google Scholar 

  24. Das J, Freitas FS, Evans IR et al (2010) A facile nonaqueous route for fabricating titania nanorods and their viability in quasi-solid-state dye-sensitized solar cells. J Mater Chem 20(21):4425–4431

    Article  Google Scholar 

  25. Zakharova GS, Andreikov EI, Osipova VA et al (2013) Effect of the titanium glycerolate precursor heat treatment procedure on the morphology and photocatalytic properties of TiO2 nanopowder. Inorg Mater 49(11):1127–1132

    Article  Google Scholar 

  26. Weirich TE, Winterer M, Seifried S et al (2000) Rietveld analysis of electron powder diffraction data from nanocrystalline anatase, TiO2. Ultramicroscopy 81(3–4):263–270

    Article  Google Scholar 

  27. Gonschorek W (1982) X-ray charge density study of rutile (TiO2). Z Kristallogr Cryst Mater 160(1–4):187–204

    Article  Google Scholar 

  28. Rouquerol J, Avnir D, Fairbridge CW et al (1994) Recommendations for the characterization of porous solids (Technical Report). Pure Appl Chem 66(8):1739–1758

    Article  Google Scholar 

  29. Preiss H, Berger L-M, Schultze D (1999) Studies on the carbothermal preparation of titanium carbide from different gel precursors. J Eur Ceram Soc 19(2):195–206

    Article  Google Scholar 

  30. Taziwa R, Meyer EL, Chinyama KG (2012) Raman temperature dependence analysis of carbon-doped titanium dioxide nanoparticles synthesized by ultrasonic spray pyrolysis technique. J Mater Sci 47(3):1531–1540. https://doi.org/10.1007/s10853-011-5943-4

    Article  Google Scholar 

  31. Balachandran U, Eror NG (1982) Raman spectra of titanium dioxide. J Solid State Chem 42(3):276–282

    Article  Google Scholar 

  32. Zhang H, Li F, Jia Q et al (2008) Preparation of titanium carbide powders by sol–gel and microwave carbothermal reduction methods at low temperature. J Sol–Gel Sci Technol 46(2):217–222

    Article  Google Scholar 

  33. Ohzuku T, Kodama T, Hirai T (1985) Electrochemistry of anatase titanium dioxide in lithium nonaqueous cells. J Power Sources 14(1–3):153–166

    Article  Google Scholar 

  34. Wagemaker M, van de Krol R, Kentgens APM et al (2001) Two phase morphology limits lithium diffusion in TiO2 (anatase): a 7Li MAS NMR study. J Am Chem Soc 123(46):11454–11461

    Article  Google Scholar 

  35. Subramanian V, Karki A, Gnanasekar KI et al (2006) Nanocrystalline TiO2 (anatase) for Li-ion batteries. J Power Sources 159(1):186–192

    Article  Google Scholar 

  36. Reddy MA, Kishore MS, Pralong V et al (2006) Room temperature synthesis and Li insertion into nanocrystalline rutile TiO2. Electrochem Commun 8(8):1299–1303

    Article  Google Scholar 

  37. Kubiak P, Pfanzelt M, Geserick J et al (2009) Electrochemical evaluation of rutile TiO2 nanoparticles as negative electrode for Li-ion batteries. J Power Sources 194(2):1099–1104

    Article  Google Scholar 

  38. Verma P, Maire P, Novák P (2010) A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim Acta 55(22):6332–6341

    Article  Google Scholar 

  39. Dahn JR, Sleigh AK, Shi H et al (1993) Dependence of the electrochemical intercalation of lithium in carbons on the crystal structure of the carbon. Electrochim Acta 38(9):1179–1191

    Article  Google Scholar 

  40. Borghols WJH, Lützenkirchen-Hecht D, Haake U et al (2010) Lithium Storage in Amorphous TiO2 Nanoparticles. J Electrochem Soc 157(5):A582–A588

    Article  Google Scholar 

  41. Guo Y-G, Hu Y-S, Maier J (2006) Synthesis of hierarchically mesoporous anatase spheres and their application in lithium batteries. Chem Commun 417(26):2783–2785

    Article  Google Scholar 

  42. Chen Z, Yuan Y, Zhou H et al (2014) 3D nanocomposite architectures from carbon-nanotube-threaded nanocrystals for high-performance electrochemical energy storage. Adv Mater 26(2):339–345

    Article  Google Scholar 

  43. Shin J-Y, Samuelis D, Maier J (2011) Sustained lithium-storage performance of hierarchical, nanoporous anatase TiO2 at high rates: emphasis on interfacial storage phenomena. Adv Funct Mater 21(18):3464–3472

    Article  Google Scholar 

  44. Kim C, Buonsanti R, Yaylian R et al (2013) Carbon-free TiO2 battery electrodes enabled by morphological control at the nanoscale. Adv Energy Mater 3(10):1286–1291

    Article  Google Scholar 

  45. Liu H, Li W, Shen D et al (2015) Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. J Am Chem Soc 137(40):13161–13166

    Article  Google Scholar 

  46. Yang Y, Ji X, Jing M et al (2015) Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries. J Mater Chem A 3(10):5648–5655

    Article  Google Scholar 

  47. Xiu Z, Hao X, Wu Y et al (2015) Graphene-bonded and -encapsulated mesoporous TiO2 microspheres as a high-performance anode material for lithium ion batteries. J Power Sources 287:334–340

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the CleanTech-Initiative of the Baden-Württemberg-Stiftung (project CT3 Nanostorage). G.S.Z acknowledges support by the Excellence Initiative of the German Federal Government. A.O. acknowledges support by the IMPRS-QD. Q.Z. acknowledges support by the National Natural Science Foundation of China (Projects 51611130056 and 51472189). The authors thank I. Glass for experimental support.

Data availability statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ottmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, G.S., Ottmann, A., Möller, L. et al. TiO2/C nanocomposites prepared by thermal annealing of titanium glycerolate as anode materials for lithium-ion batteries. J Mater Sci 53, 12244–12253 (2018). https://doi.org/10.1007/s10853-018-2488-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2488-9

Keywords

Navigation