Skip to main content
Log in

Predictions of the thermal conductivity of multiphase nanocomposites with complex structures

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Multiphase nanocomposites have drawn substantial attention due to their advanced functionality, including high thermal conductivity. Herein, theoretical models are developed based on modifications of the effective medium theory and then validated to predict the effective thermal conductivity (Keff) of three common multiphase nanocomposites: nanosheet/nanoparticle/polymer, nanotube/nanoparticle/polymer, and nanosheet/nanotube/polymer. Case studies showed that the predicted Keff agreed well with available experimental data, validating the developed models. Moreover, quantifiable material properties, like the thermal conductivity of nanofillers, the morphology of nanofillers, and the interfacial thermal resistance around nanofillers, were used to investigate their effects on the Keff of multiphase nanocomposites. This quantitative study not only can provide simplified strategy to predict the Keff for diverse multiphase nanocomposites, but it can also guide the design of multiphase nanocomposites with enhanced thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Yu J, Xiong J, Cheng B, Liu S (2005) Appl Catal B 60:211–221. https://doi.org/10.1016/j.apcatb.2005.03.009

    Article  Google Scholar 

  2. Gupta TK, Singh BP, Mathur RB, Dhakate SR (2014) Nanoscale 6:842–851. https://doi.org/10.1039/c3nr04565j

    Article  Google Scholar 

  3. De Vivo B, Lamberti P, Spinelli G et al (2013) Composites Science and Technology 89:69–76. https://doi.org/10.1016/j.compscitech.2013.09.021

    Article  Google Scholar 

  4. Yang K, Gu M (2010) Compos A Appl Sci Manuf 41:215–221. https://doi.org/10.1016/j.compositesa.2009.10.019

    Article  Google Scholar 

  5. Safdari M, Al-Haik MS (2013) Carbon 64:111–121. https://doi.org/10.1016/j.carbon.2013.07.042

    Article  Google Scholar 

  6. Naffakh M, Diez-Pascual AM, Marco C, Ellis G (2012) J Mater Chem 22:1418–1425. https://doi.org/10.1039/c1jm12543e

    Article  Google Scholar 

  7. Kumar UN, Kratz K, Wagermaier W, Behl M, Lendlein A (2010) J Mater Chem 20:3404–3415. https://doi.org/10.1039/b923000a

    Article  Google Scholar 

  8. Sumfleth J, de Almeida Prado LAS, Sriyai M, Schulte K (2008) Polymer 49:5105–5112. https://doi.org/10.1016/j.polymer.2008.09.016

    Article  Google Scholar 

  9. Li L, Wang S, Hui D, Qiu J (2015) Compos B Eng 71:40–44. https://doi.org/10.1016/j.compositesb.2014.11.039

    Article  Google Scholar 

  10. Gong F, Ding Z, Fang Y et al (2018) ACS Appl Mater Interfaces 10:14614–14621. https://doi.org/10.1021/acsami.7b19582

    Article  Google Scholar 

  11. Gong F, Li H, Wang W et al (2018) Coatings 8:63–80

    Article  Google Scholar 

  12. Yuan C, Duan B, Li L, Xie B, Huang M, Luo X (2015) ACS Appl Mater Interfaces 7:13000–13006. https://doi.org/10.1021/acsami.5b03007

    Article  Google Scholar 

  13. Guan F-L, Gui C-X, Zhang H-B, Jiang Z-G, Jiang Y, Yu Z-Z (2016) Compos B Eng 98:134–140. https://doi.org/10.1016/j.compositesb.2016.04.062

    Article  Google Scholar 

  14. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Adv Mater 20:4740–4744. https://doi.org/10.1002/adma.200800401

    Article  Google Scholar 

  15. Han Z, Fina A (2011) Prog Polym Sci 36:914–944. https://doi.org/10.1016/j.progpolymsci.2010.11.004

    Article  Google Scholar 

  16. Gong F, Papavassiliou DV, Duong HM (2014) Numerical Heat Transfer. Part A: Applications 65:1023–1043. https://doi.org/10.1080/10407782.2013.850972

    Google Scholar 

  17. Gong F, Duong HM, Papavassiliou DV (2015) The Journal of Physical Chemistry C 119:7614–7620. https://doi.org/10.1021/acs.jpcc.5b00651

    Article  Google Scholar 

  18. Gong F, Tam YS, Nguyen ST, Duong HM (2015) Chem Phys Lett 627:116–120. https://doi.org/10.1016/j.cplett.2015.03.035

    Article  Google Scholar 

  19. Gong F, Duong H, Papavassiliou D (2016) Nanomaterials 6:142–156

    Article  Google Scholar 

  20. Gong F, Liu J, Yang J et al (2017) RSC Advances 7:13615–13622. https://doi.org/10.1039/c6ra27768c

    Article  Google Scholar 

  21. Gong F, Bui K, Papavassiliou DV, Duong HM (2014) Carbon 78:305–316. https://doi.org/10.1016/j.carbon.2014.07.007

    Article  Google Scholar 

  22. Gong F, Hongyan Z, Papavassiliou DV, Bui K, Lim C, Duong HM (2014) Nanotechnology 25:205101

    Article  Google Scholar 

  23. Gao Y, Müller-Plathe F (2016) J Phys Chem B 120:1336–1346. https://doi.org/10.1021/acs.jpcb.5b08398

    Article  Google Scholar 

  24. Roy AK, Farmer BL, Varshney V, Sihn S, Lee J, Ganguli S (2012) ACS Appl Mater Interfaces 4:545–563. https://doi.org/10.1021/am201496z

    Article  Google Scholar 

  25. Nan C-W (1993) Prog Mater Sci 37:1–116. https://doi.org/10.1016/0079-6425(93)90004-5

    Article  Google Scholar 

  26. Nan C-W, Birringer R, Clarke DR, Gleiter H (1997) J Appl Phys 81:6692–6699. https://doi.org/10.1063/1.365209

    Article  Google Scholar 

  27. Chu K, Li W-S, Jia C-C, Tang F-L (2012) Appl Phys Lett 101:211903. https://doi.org/10.1063/1.4767899

    Article  Google Scholar 

  28. Nan C-W, Liu G, Lin Y, Li M (2004) Appl Phys Lett 85:3549–3551. https://doi.org/10.1063/1.1808874

    Article  Google Scholar 

  29. Huang X, Qi X, Boey F, Zhang H (2012) Chem Soc Rev 41:666–686. https://doi.org/10.1039/c1cs15078b

    Article  Google Scholar 

  30. Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Compos A Appl Sci Manuf 39:1876–1883. https://doi.org/10.1016/j.compositesa.2008.09.009

    Article  Google Scholar 

  31. Novoselov KS, Fal′ko VI, Colombo L, Gellert PR, Schwab MG, Kim K (2012) Nature 490:192–200. https://doi.org/10.1038/nature11458

    Article  Google Scholar 

  32. Biercuk MJ, Llaguno MC, Radosavljevic M, Hyun JK, Johnson AT, Fischer JE (2002) Appl Phys Lett 80:2767–2769. https://doi.org/10.1063/1.1469696

    Article  Google Scholar 

  33. Mi Y-N, Liang G, Gu A, Zhao F, Yuan L (2013) Ind Eng Chem Res 52:3342–3353. https://doi.org/10.1021/ie3029569

    Article  Google Scholar 

  34. Jianwei C, Tahir Ç, William AG III (2000) Nanotechnology 11:65

    Article  Google Scholar 

  35. Berber S, Kwon Y-K, Tománek D (2000) Phys Rev Lett 84:4613–4616

    Article  Google Scholar 

  36. Balandin AA, Ghosh S, Bao W et al (2008) Nano Lett 8:902–907. https://doi.org/10.1021/nl0731872

    Article  Google Scholar 

  37. Balandin AA (2011) Nat Mater 10:569–581. https://doi.org/10.1038/nmat3064

    Article  Google Scholar 

  38. http://accuratus.com/alumni.html

  39. Shenogin S, Xue L, Ozisik R et al (2004) J Appl Phys 95:8136–8144. https://doi.org/10.1063/1.1736328

    Article  Google Scholar 

  40. Huxtable ST, Cahill DG, Shenogin S et al (2003) Nat Mater 2:731–734. https://doi.org/10.1038/nmat996

    Article  Google Scholar 

  41. Dikin DA, Stankovich S, Zimney EJ et al (2007) Nature 448:457–460. https://doi.org/10.1038/nature06016

    Article  Google Scholar 

  42. Mohammad A, Elena A, Michael CB, Florian M-P (2009) Nanotechnology 20:115704

    Article  Google Scholar 

  43. Bui K, Grady BP, Saha MC, Papavassiliou DV (2013) Appl Phys Lett 102:203116. https://doi.org/10.1063/1.4807769

    Article  Google Scholar 

  44. Gong F, Liu X, Yang Y et al (2017) Nanomaterials 7:420–431

    Article  Google Scholar 

  45. Guo Z, Zhang D, Gong X-G (2009) Appl Phys Lett 95:163103. https://doi.org/10.1063/1.3246155

  46. Nika D, Ghosh S, Pokatilov E et al (2009) Appl Phys Lett 94:203103. https://doi.org/10.1063/1.3136860

Download references

Acknowledgements

We would like to appreciate the financial support from National Natural Science Foundation of China (51602038), Department of Science and Technology of Sichuan Province (2017HH0101, 2017GZ0113), and the Fundamental Research Funds for the Central Universities (ZYGX2016KYQD148).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Gong or Dimitrios V. Papavassiliou.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, F., Wang, W., Li, H. et al. Predictions of the thermal conductivity of multiphase nanocomposites with complex structures. J Mater Sci 53, 12157–12166 (2018). https://doi.org/10.1007/s10853-018-2486-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2486-y

Keywords

Navigation