Journal of Materials Science

, Volume 53, Issue 17, pp 12132–12144 | Cite as

Effect of restricted geometry and external pressure on the phase transitions in ammonium hydrogen sulfate confined in a nanoporous glass matrix

  • Ekaterina A. Mikhaleva
  • Igor N. Flerov
  • Andrey V. Kartashev
  • Mikhail V. Gorev
  • Maxim S. Molokeev
  • Evgeniy V. Bogdanov
  • Vitaliy S. Bondarev
  • Leonid N. Korotkov
  • Ewa Rysiakiewicz-Pasek


A study of heat capacity, thermal dilatation, susceptibility to hydrostatic pressure, permittivity and polarization loops was carried out on NH4HSO4–porous glass nanocomposites (AHS + PG) as well as empty glass matrices. The formation of dendrite clusters of AHS with a size, dcryst, exceeding the pore size was found. An insignificant anisotropy of thermal expansion of AHS + PG showing statistically uniform distribution of AHS with random orientations of nanocrystallites over the matrix was observed. The effect of internal and external pressures on thermal properties and permittivity was studied. At the phase transition P-1 ↔ Pc, a strongly nonlinear decrease in the entropy ΔS2 and volume strain (ΔV/V)T2 was observed with decreasing dcryst. The linear change in temperatures of both phase transitions P-1 ↔ Pc ↔ P21/c under hydrostatic pressure is accompanied by the expansion of the temperature range of existence of the ferroelectric phase Pc, while this interval narrows as dcryst decreases.



The reported study was funded by Russian Foundation for Basic Research (RFBR) according to the Research Project No. 16-32-00092 mol_a.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Yu (2003) Dielectric relaxation in porous glasses. Micropor Mesopor Mater 58:237–254CrossRefGoogle Scholar
  2. 2.
    Kumzerov Y, Vakhrushev S (2007) Nanostructures within porous materials. In: Nalwa HS (ed) Encyclopedia of nanoscience and nanotechnology. American Scientific Publishers, New York, pp 1–39Google Scholar
  3. 3.
    Longo E, La Porta FA (eds) (2017) Recent advances in complex functional materials from design to application. Springer, BerlinGoogle Scholar
  4. 4.
    Naberezhnov AA, Ryukhtin V, Sysoeva AA (2017) Internal structure of magnetic porous glasses and the related ferroelectric nanocomposites. Phys Solid State 59:378–384CrossRefGoogle Scholar
  5. 5.
    Deshmukh K, Ahamed MB, Sadasivuni KK, Ponnamma D, Deshmukh RR, Trimukhe AM, Pasha SSK, Polu AR, Al Maadeed MA-A, Chidambaram K (2017) Solution-processed white graphene-reinforced ferroelectric polymer nanocomposites with improved thermal conductivity and dielectric properties for electronic encapsulation. J Polym Res 24:27–31CrossRefGoogle Scholar
  6. 6.
    Komalavalli P, Banu I (2018) Enhanced room temperature multiferroic properties of nickel ferrite and lithium niobate nanocomposites. J Mater Sci: Mater Electron 29:3980–3984Google Scholar
  7. 7.
    Ciżman A, Bednarski W, Antropova TV, Pshenko O, Rysiakiewicz-Pasek E, Waplak S, Poprawski R (2014) Structural, dielectric, thermal and electron magnetic resonance studies of magnetic porous glasses filled with ferroelectrics. Composites Part B 64:16–23CrossRefGoogle Scholar
  8. 8.
    Pshenko OA, Drozdova IA, Polyakova IG, Rogacki K, Ciżman A, Poprawski R, Rysiakiewicz-Pasek E, Antropova TV (2014) Ferromagnetic iron containing porous glasses. Glass Phys Chem 40:167–172CrossRefGoogle Scholar
  9. 9.
    Belov AN, Kislova IL, Loktev DV, Redichev EN, Stroganov AA, Solnyshkin AV (2018) Electrical characterization of poly(vinylidene fluoride-trifluoroethylene) nanocrystals embedded in porous alumina matrix. J Adv Dielectr 8:1820001CrossRefGoogle Scholar
  10. 10.
    Milovidova SD, Sidorkin AS, Rogazinskaya OV, Vorotnikov EV (2016) Dielectric properties of the mixed nanocomposites: triglycine sulfate–silica. Ferroelectrics 497:69–73CrossRefGoogle Scholar
  11. 11.
    Kinka M, Banys J, Naberezhnov A (2007) Dielectric properties of sodium nitrite confined in porous glass. Ferroelectrics 348:67–74CrossRefGoogle Scholar
  12. 12.
    Fokin A, Kumzerov Yu, Koroleva E, Naberezhnov A, Smirnov O, Tovar M, Vakhrushev S, Glazman M (2009) Ferroelectric phase transitions in sodium nitrite nanocomposites. J Electroceram 22:270–275CrossRefGoogle Scholar
  13. 13.
    Rogazinskaya OV, Milovidova SD, Sidorkin AS, Popravko NG, Bosykh MA, Enshina VS (2010) Dielectric properties of ferroelectric composites with TGS inclusions. Ferroelectrics 397:191–197CrossRefGoogle Scholar
  14. 14.
    Tarnavich V, Korotkov L, Karaeva O, Naberezhnov A, Rysiakiewicz-Pasek E (2010) Effect of restricted geometry on structural phase transitions in KH2PO4 and NH4H2PO4 crystals. Opt Appl 40:305–309Google Scholar
  15. 15.
    Rogazinsksya OV, Sidorkin AS, Milovidova SD, Naberezhnov AA, Matveev NN, Popravko NG, Fokin AV (2010) Ferroelectricity in nanocomposites based on porous glass with inclusions of NaNO2. Bull Russ Acad Sci Phys 75:1327–1330CrossRefGoogle Scholar
  16. 16.
    Cizman A, Antropova T, Anfimova I, Drozdova I, Rysiakiewicz-Pasek E, Radojewska EB, Poprawski R (2013) Size driven ferroelectric–paraelectric phase transition in TGS nanocomposites. J Nanopart Res 15:1807CrossRefGoogle Scholar
  17. 17.
    Cizman A, Marciniszyn T, Enke D, Barascu A, Poprawski R (2013) Phase transition in NH4HSO4–porous glasses nanocomposites. J Nanopart Res 15:1756CrossRefGoogle Scholar
  18. 18.
    Baryshnikov SV, Milinskiy AYu, Charnaya EV, Bugaev AS, Samoylovich MI (2016) Dielectric studies of ferroelectric NH4HSO4 nanoparticles embedded into porous matrices. Ferroelectrics 493:85–92CrossRefGoogle Scholar
  19. 19.
    Rysiakiewicz-Pasek E, Ciżman A, Drozdova I, Polyakova I, Antropova T (2016) Synthesis, structure and properties of mixed KNO3–NaNO3 embedded into nanoporous silica glasses. Compos Part B Eng 91:291–295CrossRefGoogle Scholar
  20. 20.
    Kutnjak Z, Vodopivec B, Blinc R, Fokin AV, Kumzerov YA, Vakhrushev SB (2005) Calorimetric and dielectric studies of ferroelectric sodium nitrite confined in a nanoscale porous glass matrix. J Chem Phys 123:084708CrossRefGoogle Scholar
  21. 21.
    Rysiakiewicz-Pasek E, Poprawski R, Polanska J, Urbanowicz A, Sieradzki A (2006) Properties of porous glasses with embedded ferroelectric materials. J Non Cryst Solids 352:4309–4314CrossRefGoogle Scholar
  22. 22.
    Kumzerov Y, Kartenko NF, Parfen’eva LS, Smirnov IA, Fokin AV, Wlosewicz D, Misiorek H, Jezowski A (2011) Capacity and thermal conductivity of a nanocomposite chrysolite asbestos–KDP (KH2PO4). Phys Solid State 53:1099–1103CrossRefGoogle Scholar
  23. 23.
    Cizman A, Marciniszyn T, Poprawski R (2012) Pressure effect on the ferroelectric phase transition in nanosized NH4HSO4. J Appl Phys 112:034104CrossRefGoogle Scholar
  24. 24.
    San-Miguel A (2006) Nanomaterials under high-pressure. Chem Soc Rev 35:876–889CrossRefGoogle Scholar
  25. 25.
    Pepinsky R, Vedam K, Okaya YS, Hosino S (1958) Ammonium hydrogen sulfate: a new ferroelectric with low coercive field. Phys Rev 111:1508–1510CrossRefGoogle Scholar
  26. 26.
    Flerov IN, Zinenko VI, Zherebtsova LI, Iskornev IM, Blat DCh (1975) Study of phase transitions in ammonium hydrosulfate. Izvestiya AN USSR (seriya fizicheskaya) 39:752–757Google Scholar
  27. 27.
    Swain D, Bhadram VS, Chowdhury P, Narayana C (2012) Raman and X-ray investigations of ferroelectric phase transition in NH4HSO4. J Phys Chem A 116:223–230CrossRefGoogle Scholar
  28. 28.
    Mikhaleva EA, Flerov IN, Bondarev VS, Gorev MV, Vasiliev AD, Davydova TN (2011) Phase transitions and caloric effects in ferroelectric solid solutions of ammonium and rubidium hydrosulfates. Phys Solid State 53:510–517CrossRefGoogle Scholar
  29. 29.
    Mikhaleva EA, Flerov IN, Kartashev AV, Gorev MV, Bogdanov EV, Bondarev VS (2017) Thermal, dielectric and barocaloric properties of NH4HSO4 crystallized from an aqueous solution and the melt. Solid State Sci 67:1–7CrossRefGoogle Scholar
  30. 30.
    Kosova DA, Emelina AL, Bykov MA (2014) Phase transitions of some sulfur-containing ammonium salts. Thermochim Acta 595:61–66CrossRefGoogle Scholar
  31. 31.
    Bruker AXS TOPAS V4 (2008) General profile and structure analysis software for powder diffraction data—user’s manual. Bruker AXS, KarlsruheGoogle Scholar
  32. 32.
    Rysiakiewicz-Pasek E, Popravski R, Urbanowicz A, Maczka M (2005) Porous glasses with sodium nitrite impregnations. Opt Appl 35:769–774Google Scholar
  33. 33.
    Kartashev AV, Flerov IN, Volkov NV, Sablina KA (2008) Adiabatic calorimetric study of the intense magnetocaloric effect and the heat capacity of (La0.4Eu0.6)0.7Pb0.3MnO3. Phys Solid State 50:2115–2120CrossRefGoogle Scholar
  34. 34.
    Shimizu H, Abe N, Yasuda N, Fujimoto S, Sawada S, Shiroishi Y (1979) Differential thermal analysis using a Ge–Ag thermocouple under hydrostatic pressure: phase behavior of {N(CH3)4}2MnCl4. Jpn J Appl Phys 18:857–858CrossRefGoogle Scholar
  35. 35.
    Iskornev IM, Flerov IN (1978) Thermal expansion of ferroelectric crystals of the ammonium hydrosulfate family. Fizika Tverdogo Tela 20:2649–2653Google Scholar
  36. 36.
    Lines ME, Glass AM (1979) Principles and applications of ferroelectrics and related materials (international series of monographs on physics). Oxford University Press, OxfordGoogle Scholar
  37. 37.
    Flerov IN, Mikhaleva EA (2008) Electrocaloric effect and anomalous conductivity of the ferroelectric NH4HSO4. Phys Solid State 50:478–484CrossRefGoogle Scholar
  38. 38.
    Polandov IN, Mylov VP, Strukov BA (1969) About p–T phase diagram of ferroelectric crystal NH4HSO4. Sov Phys Solid State 10:1754–1756Google Scholar
  39. 39.
    Miller R, Blinc R, Brenman M, Waugh JS (1962) Nuclear spin-lattice relaxation in some ferroelectric ammonium salts. Phys Rev 126:528–532CrossRefGoogle Scholar
  40. 40.
    Nelmes RJ (1971) An X-ray diffraction determination of the crystal structure of ammonium hydrosulfate above the ferroelectric transition. Acta Crystallogr B 27:272–281CrossRefGoogle Scholar
  41. 41.
    Nelmes RJ (1972) The structure of ammonium hydrogen sulfate in its ferroelectric phase and the ferroelectric transition. Ferroelectrics 4:133–140CrossRefGoogle Scholar
  42. 42.
    Kretschmar R, Binder K (1979) Surface effects on phase transitions in ferroelectrics and dipolar magnets. Phys Rev B 20:1065–1076CrossRefGoogle Scholar
  43. 43.
    Tilley DR, Zeks B (1984) Landau theory of phase transitions in thick films. Solid State Commun 49:823–828CrossRefGoogle Scholar
  44. 44.
    Ishikawa K, Yoshikawa K, Okada N (1988) Size effect on the ferroelectric phase transition in PbTiO3 ultrafine particles. Phys Rev B 37:5852–5855CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Kirensky Institute of Physics, Federal Research Center KSC SB RASKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia
  3. 3.Astafijev Krasnoyarsk State Pedagogical UniversityKrasnoyarskRussia
  4. 4.Department of PhysicsFar Eastern State Transport UniversityKhabarovskRussia
  5. 5.Krasnoyarsk State Agrarian UniversityKrasnoyarskRussia
  6. 6.Voronezh State Technical UniversityVoronezhRussia
  7. 7.Division of Experimental Physics, Faculty of Fundamental Problems of TechnologyWroclaw University of Science and TechnologyWrocławPoland

Personalised recommendations