Advertisement

Journal of Materials Science

, Volume 53, Issue 17, pp 12523–12533 | Cite as

Morphology of W fibers and kinetic undercooling in directionally solidified NiAl–W eutectic alloy

  • Jianjun Gao
  • Zhilong Zhao
  • Lufeng Wei
  • Kai Cui
  • Jingying Guo
  • Sen Chen
  • Zhirong Hu
  • Yalong Liu
  • Lin Liu
Metals
  • 16 Downloads

Abstract

The relationship between the cross-sectional shape of W fibers and kinetic undercooling in directionally solidified (DS) NiAl–W eutectic alloys was investigated. When the growth rate was less than 8 µm/s, the cross-sectional shape of W fibers was hexagonal (faceted); conversely, when the growth rate was more than 8 µm/s, their cross-sectional shape was elliptical (nonfaceted). Meanwhile, the NiAl matrix and W fibers in DS NiAl–W eutectic alloys presented a particular crystallographic orientation. The crystallographic orientation between NiAl matrix and W fibers was [\( \bar{1} \)11]NiAl//[200]W in the growth rate of 6 µm/s, and [\( \bar{1} \)11]NiAl//[\( \bar{1} \)11]W in the growth rate of 8 µm/s. A critical kinetic undercooling \( \Delta T_{k,W}^{c} \) can be used to predict the transition from the faceted to nonfaceted growth of W fibers in DS NiAl–W eutectic alloys. When the kinetic undercooling \( \Delta T_{k} \) of the W phase was less than \( \Delta T_{k,W}^{c} \), the W fibers’ growth was faceted with a hexagonal shape, whereas when \( \Delta T_{k} > \Delta T_{k,W}^{c} \), the W fibers exhibited nonfaceted growth with elliptical shape.

Notes

Acknowledgement

This work is financially supported by National Natural Science Foundation of China (No. 51374173).

References

  1. 1.
    Noebe RD, Bowman RR, Nathal MV (1993) Review of the physical and mechanical properties of the B2 compound NiAl. Int Mater Rev 38:193–232CrossRefGoogle Scholar
  2. 2.
    Miracle DB (1993) The physical and mechanical properties of NiAl. Acta Metall Mater 41:649–684CrossRefGoogle Scholar
  3. 3.
    Wang YL, Jones IP, Smallman RE (2006) The effects of iron on the creep properties of NiAl. Intermetallics 14:800–810CrossRefGoogle Scholar
  4. 4.
    Vaerst G, Löser W, Leonhardt M, Bächer I (1995) Elemental partitioning in directionally solidified NiAl single crystals. Intermetallics 3(4):303–308CrossRefGoogle Scholar
  5. 5.
    Milenkovic S, Schneider A, Frommeyer G (2011) Constitutional and microstructural investigation of the pseudobinary NiAl–W system. Intermetallics 19(3):342–349CrossRefGoogle Scholar
  6. 6.
    Joslin SM, Chen XF, Oliver BF et al (1995) Fracture behavior of directionally solidified NiAl–Mo and NiAl–V eutectics. Mater Sci Eng, A 196(1–2):9–18CrossRefGoogle Scholar
  7. 7.
    Milenkovic S, Hassel AW, Schneider A (2006) Effect of the growth conditions on the spatial features of Re nanowires produced by directional solidification. Nano Lett 6(4):794–799CrossRefGoogle Scholar
  8. 8.
    Wang L, Shen J, Zhang Y et al (2017) Microstructure evolution and room temperature fracture toughness of as-cast and directionally solidified novel NiAl–Cr (Fe) alloy. Intermetallics 84:11–19CrossRefGoogle Scholar
  9. 9.
    Bei H, George EP (2005) Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy. Acta Mater 53(1):69–77CrossRefGoogle Scholar
  10. 10.
    Milenkovic S, Drensler S, Hassel AW (2011) A novel concept for the preparation of alloy nanowires. Phys Status Solidi 208(6):1259–1264CrossRefGoogle Scholar
  11. 11.
    Hassel AW, Milenkovic S, Smith AJ (2010) Large scale synthesis of single crystalline tungsten nanowires with extreme aspect ratios. Phys Status Solidi 207(4):858–863CrossRefGoogle Scholar
  12. 12.
    Fenster C, Smith AJ, Abts A et al (2008) Single tungsten nanowires as pH sensitive electrodes. Electrochem Commun 10(8):1125–1128CrossRefGoogle Scholar
  13. 13.
    Rodriguez BB, Smith AJ, Hassel AW (2008) Electrodeposition of gold on tungsten nanowires present in NiAl–W eutectics. J Electroanal Chem 618(1):11–16CrossRefGoogle Scholar
  14. 14.
    Hassel AW, Smith AJ, Milenkovic S (2006) Nanostructures from directionally solidified NiAl–W eutectic alloys. Electrochim Acta 52(4):1799–1804CrossRefGoogle Scholar
  15. 15.
    Hassel AW, Bello-Rodriguez B, Milenkovic S et al (2005) Electrochemical production of nanopore arrays in a nickel aluminium alloy. Electrochim Acta 50(15):3033–3039CrossRefGoogle Scholar
  16. 16.
    Milenkovic S, Hassel AW (2009) Spatial features control of self-organised tungsten nanowire arrays. Phys Status Solidi A 206(3):455–461CrossRefGoogle Scholar
  17. 17.
    Hassel AW, Bello-Rodriguez B, Smith AJ et al (2010) Preparation and specific properties of single crystalline metallic nanowires. Phys Status Solidi 247(10):2380–2392CrossRefGoogle Scholar
  18. 18.
    Garmong G, Rhodes CG, Spurlemg RA (1973) Crystallography and morphology of as-grown and coarsened Al–Al3Ni directionally solidified eutectic. Metall Trans 4(3):707–714CrossRefGoogle Scholar
  19. 19.
    Khan S, Elliott R (1996) Quench modification of aluminium-silicon eutectic alloys. J Mater Sci 31(14):3731–3737.  https://doi.org/10.1007/BF00352787 CrossRefGoogle Scholar
  20. 20.
    Gao K, Li SM, Fu HZ (2014) Microstructure evolution and orientation analysis of hypereutectic Al–Al2Cu alloy under directional solidification. Acta Metall Sin 50(8):962–970Google Scholar
  21. 21.
    Flood SC, Hunt JD (1981) Modification of Al-Si eutectic alloys with Na. Metal Sci 15(7):287–294CrossRefGoogle Scholar
  22. 22.
    Miller CE (1977) Faceting transition in melt-grown crystals. J Cryst Growth 42:357–363CrossRefGoogle Scholar
  23. 23.
    Jian ZY, Kuribayashi K, Jie WQ (2004) Critical undercoolings for the transition from the lateral to continuous growth in undercooled silicon and germanium. Acta Mater 52(11):3323–3333CrossRefGoogle Scholar
  24. 24.
    Jackson KA (1958) Liquid metals and solidification, vol 174. American Society for Metals, ClevelandGoogle Scholar
  25. 25.
    Jackson KA, Hunt JD (1966) Lamellar and rod eutectic growth. Metall Soc AIME 236:1129–1142Google Scholar
  26. 26.
    Fan QN, Wang CY, Yu T et al (2015) A ternary Ni–Al–W EAM potential for Ni-based single crystal superalloys. Phys B 456:283–292CrossRefGoogle Scholar
  27. 27.
    Stefanescu DM (2009) Science and engineering of casting solidification, 2nd edn. Springer, Berlin, p 176Google Scholar
  28. 28.
    Fu HZ, Guo JJ, Liu L, Lin JS (2008) Directional solidification and processing of advanced materials. Science Press, Beijing, pp 223–275Google Scholar
  29. 29.
    Villars P, Prince A, Okamoto H (1997) Handbook of ternary alloy phase diagrams, 2nd Printing. ASM International, USA, p 89Google Scholar
  30. 30.
    Ponomareva AV, Isaev EI, Vekilov YK et al (2012) Site preference and effect of alloying on elastic properties of ternary B2 NiAl–based alloys. Phys Rev B 85(14):144117CrossRefGoogle Scholar
  31. 31.
    Bayles BJ, Ford JA, Salkind MJ (1967) The effect of elevated-temperature exposure on the microstructure and tensile strength of Al3Ni whisker-reinforced aluminum. AIME Trans 239:844–849Google Scholar
  32. 32.
    Gali A, Bei H, George EP (2010) Effects of boron on the microstructure and thermal stability of directionally solidified NiAl–Mo eutectic. Acta Mater 58(2):421–428CrossRefGoogle Scholar
  33. 33.
    Gali A, Bei H, George EP (2009) Thermal stability of Cr–Cr3Si eutectic microstructures. Acta Mater 57(13):3823–3829CrossRefGoogle Scholar
  34. 34.
    Cline HE, Walter JL, Lifshin E et al (1971) Structures, faults, and the rod-plate transition in eutectics. Metall Trans 2(1):189–194CrossRefGoogle Scholar
  35. 35.
    Ye DL, Hu JH (2002) Thermochemical data manual of practical mineral inorganic substance, 2nd edn. China Metallurgy Press, BeijingGoogle Scholar
  36. 36.
    Trivedi R, Laorchan V (1988) Crystallization from an amorphous matrix-I. Morphological studies. Acta Metall 36:1941–1950CrossRefGoogle Scholar
  37. 37.
    Rao KN, Sekhar JA (1987) Solidification of the quasi crystalline phase in the Al–Cu–Li system. Scr Metall 21:805–810CrossRefGoogle Scholar
  38. 38.
    Cahn JW, Hillig WB, Sears GW (1964) The molecular mechanism of solidification. Acta Metall 12:1421–1439CrossRefGoogle Scholar
  39. 39.
    Li JF, Zhou YH (2005) Influence of interface dynamics on eutectic growth process. Sci China, Ser E Eng Mater Sci 35(5):449–458Google Scholar
  40. 40.
    Zhou YH (1998) Solidification technology. China Machine Press, Beijing, pp 36–51Google Scholar
  41. 41.
    Liu RP, Volkmann T, Herlach DM (2001) Undercooling and solidification of Si by electromagnetic levitation. Acta Mater 49(3):439–444CrossRefGoogle Scholar
  42. 42.
    Li D, Eckler K, Herlach DM (1996) Undercooling, crystal growth and grain structure of levitation melted pure Ge and Ge–Sn alloys. Acta Mater 44(6):2437–2443CrossRefGoogle Scholar
  43. 43.
    Rutter JW, Chalmers B (1953) A prismatic substructure formed during solidification of metals. Can J Phys 31(1):15–39CrossRefGoogle Scholar
  44. 44.
    Peteves SD, Abbaschina R (1991) Growth Kinetics of Solid-Liquid Ga Interfaces: Part I. Experimental. Metall Trans A 22A:1259–1270CrossRefGoogle Scholar
  45. 45.
    Yilmaz F, Elliott R (1984) Faceting in the Al–CuAl2 system. J Cryst Growth 66(2):465–468CrossRefGoogle Scholar
  46. 46.
    Cahn JW (1960) Theory of crystal growth and interface motion in crystalline materials. Acta Metall 8:554–562CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNorthwestern Polytechnical UniversityXi’anChina
  2. 2.State Key Laboratory of Solidification ProcessingNorthwestern Polytechnical UniversityXi’anChina

Personalised recommendations