Journal of Materials Science

, Volume 53, Issue 16, pp 11329–11342 | Cite as

Facile fabrication of hierarchical BiVO4/TiO2 heterostructures for enhanced photocatalytic activities under visible-light irradiation

  • Liang Shi
  • Chonglei Xu
  • Xun Sun
  • Hua Zhang
  • Zhaoxin Liu
  • Xiaofei QuEmail author
  • Fanglin DuEmail author
Chemical routes to materials


BiVO4/TiO2 nanocomposites were fabricated by a facile wet-chemical process, followed by the synthesis of TiO2 hierarchical spheres via hydrothermal method. The BiVO4/TiO2 nanocomposites were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, UV–Vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results showed that prepared TiO2 presented hierarchical spherical morphology self-assembled by nanoparticles and an anatase–brookite mixed crystal phase. The introduction of monoclinic BiVO4 components retained the hierarchical structures and expanded the light response to around 510 nm. Type II BiVO4/TiO2 heterostructured nanocomposites exhibited improved photocatalytic degradation towards methylene blue under visible-light irradiation, especially for the composite photocatalysts with atomic Ti/Bi = 10, which showed double degradation rate than that of pure BiVO4. The enhanced photocatalytic mechanism of the heterostructured BiVO4/TiO2 nanocomposites was discussed as well.



This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant No. 51272115 and NSFC, Grant No. 61504073) and Doctoral Found of QUST (No. 010022803).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest regarding the publication of this article.

Supplementary material

10853_2018_2442_MOESM1_ESM.doc (242 kb)
Supplementary material 1 (DOC 241 kb)


  1. 1.
    Cai ZQ, Zhao X, Wang T, Liu W, Zhao DY (2017) Reusable platinum-deposited anatase/hexa-titanate nanotubes: roles of reduced and oxidized platinum on enhanced solar-light-driven photocatalytic activity. ACS Sustain Chem Eng 5:547–555CrossRefGoogle Scholar
  2. 2.
    Sommers JM, Alderman NP, Viasus CJ, Gambarotta S (2017) Revisiting the behaviour of BiVO4 as a carbon dioxide reduction photo-catalyst. Dalton Trans 46:6404–6408CrossRefGoogle Scholar
  3. 3.
    Lai YK, Huang JY, Cui ZQ, Ge MZ, Zhang KQ, Chen Z, Chi LF (2016) Recent advances in TiO2-based nanostructured surfaces with controllable wettability and adhesion. Small 12:2203–2224CrossRefGoogle Scholar
  4. 4.
    Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271CrossRefGoogle Scholar
  5. 5.
    Wenderich K, Mul G (2016) Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem Rev 116:14587–14619CrossRefGoogle Scholar
  6. 6.
    Kou JH, Lu CH, Wang J, Chen YK, Xu ZZ, Varma RS (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117:1445–1514CrossRefGoogle Scholar
  7. 7.
    Chen F, Yang Q, Wang Y, Zhao J, Wang D, Li X, Guo Z, Wang H, Deng Y, Niu C, Zeng G (2017) Novel ternary heterojunction photocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant. Appl Catal B 205:133–147CrossRefGoogle Scholar
  8. 8.
    Xia L, Bai J, Li J, Zeng Q, Li L, Zhou B (2017) High-performance BiVO4 photoanodes cocatalyzed with an ultrathin α-Fe2O3 layer for photoelectrochemical application. Appl Catal B 204:127–133CrossRefGoogle Scholar
  9. 9.
    Zhu S, Li Q, Huttula M, Li T, Cao W (2017) One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity. J Mater Sci 52:1679–1693. CrossRefGoogle Scholar
  10. 10.
    Kalanur SS, Yoo IH, Park J, Seo HT (2017) Insights into the electronic bands of WO3/BiVO4/TiO2, revealing high solar water splitting efficiency. J Mater Chem A 5:1455–1461CrossRefGoogle Scholar
  11. 11.
    Singh AP, Kodan N, Mehta BR, Held A, Mayrhofer L, Moseler M (2016) Band edge engineering in BiVO4/TiO2 heterostructure: enhanced photoelectrochemical performance through improved charge transfer. ACS Catal 6:5311–5318CrossRefGoogle Scholar
  12. 12.
    Odling G, Robertson N (2016) BiVO4–TiO2 composite photocatalysts for dye degradation formed using the SILAR method. ChemPhysChem 17:2872–2880CrossRefGoogle Scholar
  13. 13.
    Cheng BY, Yang JS, Cho HW, Wu JJ (2016) Fabrication of an efficient BiVO4–TiO2 heterojunction photoanode for photoelectrochemical water oxidation. ACS Appl Mater Interfaces 8:20032–20039CrossRefGoogle Scholar
  14. 14.
    Nanakkal AR, Alexander LK (2017) Graphene/BiVO4/TiO2 nanocomposite: tuning band gap energies for superior photocatalytic activity under visible light. J Mater Sci 52:7997–8006. CrossRefGoogle Scholar
  15. 15.
    Lui G, Liao JY, Duan AS, Zhang ZS, Fowler M, Yu AP (2013) Graphene-wrapped hierarchical TiO2 nanoflower composites with enhanced photocatalytic performance. J Mater Chem A 1:12255–12262CrossRefGoogle Scholar
  16. 16.
    Li WJ, Wang Z, Kong DF, Du DD, Zhou M, Du Y, Yan TJ, You JM, Kong DS (2016) Visible-light-induced dendritic BiVO4/TiO2 composite photocatalysts for advanced oxidation process. J Alloys Compd 688:703–711CrossRefGoogle Scholar
  17. 17.
    Zhu Y, Shah MW, Wang C (2017) Insight into the role of Ti3+ in photocatalytic performance of shuriken-shaped BiVO4/TiO2−x heterojunction. Appl Catal B 203:526–532CrossRefGoogle Scholar
  18. 18.
    Resasco J, Zhang H, Kornienko N, Becknell N, Lee H, Guo JH, Briseno AL, Yang PD (2016) TiO2/BiVO4 nanowire heterostructure photoanodes based on type II band alignment. ACS Cent Sci 2:80–88CrossRefGoogle Scholar
  19. 19.
    Wang Y, Xu H, Wang X, Zhang X, Jia H, Zhang L, Qiu J (2006) A general approach to porous crystalline TiO2, SrTiO3, and BaTiO3 spheres. J Phys Chem B 110:13835–13840CrossRefGoogle Scholar
  20. 20.
    Pottier A, Chaneac C, Tronc E, Mazerolles L, Jolivet JP (2001) Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J Mater Chem 11:1116–1121CrossRefGoogle Scholar
  21. 21.
    Zhao B, Lin L, He D (2013) Phase and morphological transitions of titania/titanate nanostructures from an acid to an alkali hydrothermal environment. J Mater Chem A 1:1659–1668CrossRefGoogle Scholar
  22. 22.
    Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, PrenticeGoogle Scholar
  23. 23.
    Tian F, Zhang YP, Zhang J, Pan CX (2012) Raman spectroscopy: a new approach to measure the percentage of anatase TiO2 exposed (001) facets. J Phys Chem C 116:7515–7519CrossRefGoogle Scholar
  24. 24.
    Pauling L, Sturdivant JH (1928) The crystal structure of brookite. Z Kristall 68:239–256Google Scholar
  25. 25.
    Bellardita M, Paola AD, Megna B, Palmisano L (2017) Absolute crystallinity and photocatalytic activity of brookite TiO2 samples. Appl Catal B 201:150–158CrossRefGoogle Scholar
  26. 26.
    Sing KS (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  27. 27.
    Kong HJ, Won DH, Kim J, Woo SI (2016) Sulfur-doped g-C3N4/BiVO4 composite photocatalyst for water oxidation under visible light. Chem Mater 28:1318–1324CrossRefGoogle Scholar
  28. 28.
    Chen XB, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959CrossRefGoogle Scholar
  29. 29.
    Romero OI, Beltram A, Delgado JJ, Adami G, Montini T, Fornasiero P (2015) Photocatalytic H2 production by ethanol photodehydrogenation: effect of anatase/brookite nanocomposites composition. Inorg Chim Acta 431:197–205CrossRefGoogle Scholar
  30. 30.
    Tay Q, Chen Z (2016) Effective charge separation towards enhanced photocatalytic activity via compositing reduced graphene oxide with two-phase anatase/brookite TiO2. Int J Hydrog Energy 41:10590–10597CrossRefGoogle Scholar
  31. 31.
    Zhu X, Zhang F, Wang M, Gao X, Luo Y, Xue J, Zhang Y, Ding J, Sun S, Bao J, Gao C (2016) A shuriken-shaped m-BiVO4/{001}–TiO2 heterojunction: synthesis, structure and enhanced visible light photocatalytic activity. Appl Catal A 521:42–49CrossRefGoogle Scholar
  32. 32.
    Wetchakun N, Chainet S, Phanichphant S, Wetchakun K (2015) Efficient photocatalytic degradation of methylene blue over BiVO4/TiO2 nanocomposites. Ceram Int 41:5999–6004CrossRefGoogle Scholar
  33. 33.
    Wang L, Shan LW, Wu Z, Dong LM (2017) Enhanced photocatalytic properties of molybdenum-doped BiVO4 prepared by sol–gel method. Rare Met 36:129–133CrossRefGoogle Scholar
  34. 34.
    Pan J, Jiang SP (2016) Synthesis of nitrogen doped faceted titanium dioxide in pure brookite phase with enhanced visible light photoactivity. J Colloid Interface Sci 469:25–30CrossRefGoogle Scholar
  35. 35.
    Song X, Li Y, Wei Z, Ye S, Dionysiou DD (2017) Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light. Chem Eng J 314:443–452CrossRefGoogle Scholar
  36. 36.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  37. 37.
    Wang JC, Zhang L, Fang WX, Ren J, Li YY, Yao HC, Wang JS, Li ZJ (2015) Enhanced photoreduction CO2 activity over direct Z-scheme α-Fe2O3/Cu2O heterostructures under visible light irradiation. ACS Appl Mater Interfaces 7:8631–8639CrossRefGoogle Scholar
  38. 38.
    Wu X, Zhao J, Wang L, Han M, Zhang M, Wang H, Huang H, Liu Y, Kang Z (2017) Carbon dots as solid-state electron mediator for BiVO4/CDs/CdS Z-scheme photocatalyst working under visible light. Appl Catal B 206:501–509CrossRefGoogle Scholar
  39. 39.
    Morrison SR (1980) Electrochemistry at semiconductor and oxidized metal electrodes. Plenum Press, New YorkCrossRefGoogle Scholar
  40. 40.
    Sun J, Li X, Zhao Q, Ke J, Zhang D (2014) Novel V2O5/BiVO4/TiO2 nanocomposites with high visible-light-induced photocatalytic activity for the degradation of toluene. J Phys Chem C 118:10113–10121CrossRefGoogle Scholar
  41. 41.
    Hu Y, Li D, Zheng Y, Chen W, He Y, Shao Y, Fu X, Xiao G (2011) BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl Catal B 104:30–36CrossRefGoogle Scholar
  42. 42.
    Ye LQ, Liu JY, Jiang Z, Peng TY, Zan L (2013) Facets coupling of BiOBr-g-C3N4 composite photocatalyst for enhanced visible-light-driven photocatalytic activity. Appl Catal B Environ 142–143:1–7Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringQingdao University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations