Adsorption properties of NO, NH3, and O2 over β-MnO2(110) surface

  • Baozhong Zhu
  • Qilong Fang
  • Yunlan Sun
  • Shoulai Yin
  • Guobo Li
  • Zhaohui Zi
  • Tingting Ge
  • Zicheng Zhu
  • Mengxing Zhang
  • Jiaxin Li
Computation
  • 19 Downloads

Abstract

Selective catalytic reduction (SCR) of NO x with NH3 has been widely adopted to reduce NO x emissions. Although MnO x -based catalysts exhibit higher NO x conversion, the underlying reaction mechanism is still unclear. Since the SCR is a gas–solid catalytic reaction, the adsorption of related gas species on the catalyst surface plays a key role. In this study, the adsorption of NO, NH3, and O2 on β-MnO2(110) surface was investigated by density functional theory calculations, showing their individual adsorption properties. Two different gas molecules can also simultaneously adsorb on the same adsorption site. When NO and O2 co-adsorb on the surface, NO is oxidized by O2 to form bridge nitrates and nitrites. This work provides a foundation for studying the mechanism of the SCR of NO x with NH3.

Notes

Acknowledgements

We greatly appreciate the financial support provided by the National Natural Science Foundation of China (Nos. 51676001, 51376007, U1660206), the Anhui Provincial Natural Science Foundation (No. 1608085ME104), Key Projects of Anhui Province University Outstanding Youth Talent (Nos. gxyqZD2016074, gxyqZD2017038), and Funding Projects of Back-up Candidates (No. 2017H131).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2437_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1211 kb)

References

  1. 1.
    Abelson PH (1985) Air pollution and acid rain. Science 230:617–618CrossRefGoogle Scholar
  2. 2.
    Taylor KC (1993) Nitric oxide catalysis in automotive exhaust systems. Catal Rev 25:457–481CrossRefGoogle Scholar
  3. 3.
    Granger P, Parvulescu VI (2011) Catalytic NOx abatement systems for mobile sources: from three-way to lean burn after-treatment technologies. Chem Rev 111:3155–3199CrossRefGoogle Scholar
  4. 4.
    Roy S, Viswanath B, Hegde MS, Madras G (2008) Low-temperature selective catalytic reduction of NO with NH3 over Ti0.9M0.1O2-δ (M = Cr, Mn, Fe Co, Cu). J Phys Chem C 112:6002–6012CrossRefGoogle Scholar
  5. 5.
    Yang SJ, Wang CZ, Li JH, Yan NQ, Ma L, Chang HZ (2011) Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study. Appl Catal B: Environ 110:71–80CrossRefGoogle Scholar
  6. 6.
    Sang ML, Hong SC (2015) Promotional effect of vanadium on the selective catalytic oxidation of NH3 to N2 over Ce/V/TiO2 catalyst. Appl Catal B: Environ 163:30–39CrossRefGoogle Scholar
  7. 7.
    Tang XL, Hao JM, Xu WG, Li JH (2007) Low temperature selective catalytic reduction of NOx with NH3 over amorphous MnOx catalysts prepared by three methods. Catal Commun 8:329–334CrossRefGoogle Scholar
  8. 8.
    Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B: Environ 9:25–64CrossRefGoogle Scholar
  9. 9.
    Wang LS, Huang BC, Su YS, Zhou GY, Wang KL, Luo HC, Ye DQ (2012) Manganese oxides supported on multi-walled carbon nanotubes for selective catalytic reduction of NO with NH3: catalytic activity and characterization. Chem Eng J 192:232–241CrossRefGoogle Scholar
  10. 10.
    Li L, Wei ZD, Chen SG, Qi XQ, Ding W, Xia MR, Li R, Xiong K, Deng ZH, Gao YY (2012) A comparative DFT study of the catalytic activity of MnO2 (211) and (221) surfaces for an oxygen reduction reaction. Chem Phys Lett 539–54:89–93CrossRefGoogle Scholar
  11. 11.
    Fang D, He F, Li D, Xie JL (2013) First principles and experimental study of NH3 adsorptions on MnOx surface. Appl Surf Sci 285:215–219CrossRefGoogle Scholar
  12. 12.
    Tompsett DA, Middlemiss DS, Islam MS (2012) Importance of anisotropic Coulomb interactions and exchange to the band gap and antiferromagnetism of β-MnO2 from DFT + U. Phys Rev B 86:205126–205134CrossRefGoogle Scholar
  13. 13.
    Jiao F, Bruce PG (2007) Mesoporous crystalline β-MnO2 a reversible positive electrode for rechargeable lithium batteries. Adv Mater 19:657–660CrossRefGoogle Scholar
  14. 14.
    Gu X, Chen L, Ju ZC, Xu HY, Yang J, Qian YT (2013) Controlled growth of porous α-Fe2O3 branches on β-MnO2 nanorods for excellent performance in lithium-Ion batteries. Adv Funct Mater 23:4049–4056CrossRefGoogle Scholar
  15. 15.
    Imperorclerc M, Bazin D, Appay M, Beaunier P, Davidson A (2004) Crystallization of β-MnO2 nanowires in the pores of SBA-15 Silicas: in situ investigation using synchrotron radiation. Chem Mater 16:1813–1821CrossRefGoogle Scholar
  16. 16.
    Luo JY, Zhang JJ, Xia YY (2007) Highly electrochemical reaction of lithium in the ordered mesoporosus β-MnO2. Chem Mater 38:5618–5623Google Scholar
  17. 17.
    Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50CrossRefGoogle Scholar
  18. 18.
    Dong W, Kresse G, Furthmüller J, Hafner J (1996) Chemisorption of H on Pd (111): an ab initio approach with ultrasoft pseudopotential. Phys Rev B 54:2157–2166CrossRefGoogle Scholar
  19. 19.
    Rohrbach A, Hafner J, Kresse G (2003) Electronic correlation effects in transition-metal sulfides. J Phys Condens Mater 15:979–996CrossRefGoogle Scholar
  20. 20.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  21. 21.
    Jain A, Hautier G, Moore CJ, Ong SP, Fischer CC, Mueller T, Persson KA, Ceder G (2011) A high-throughput infrastructure for density functional theory calculations. Comput Mater Sci 50:2295–2310CrossRefGoogle Scholar
  22. 22.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys Rev B 57:1505–1509CrossRefGoogle Scholar
  23. 23.
    Bengone O, Alouani M, Bloechl P, Hugel J (2000) Implementation of the projector augmented wave LDA + U method: application to the electronic structure of NiO. Phys Rev B 62:16392–16401CrossRefGoogle Scholar
  24. 24.
    Tang YH, Zhang H, Cui LX, Ouyang CY, Shi SS, Tang WH, Li H, Lee JS, Chen LQ (2010) First-principles investigation on redox properties of M-doped CeO2 (M=Mn, Pr, Sn, Zr). Phys Rev B 82:125104–125113CrossRefGoogle Scholar
  25. 25.
    Oxford GAE, Chaka AM (2011) First-principles calculations of clean, oxidized, and reduced β-MnO2 Surfaces. J Phys Chem C 115:16992–17008CrossRefGoogle Scholar
  26. 26.
    Oxford GAE, Chaka AM (2012) Structure and stability of hydrated β-MnO2 surfaces. J Phys Chem C 116:11589–11605CrossRefGoogle Scholar
  27. 27.
    Mellan TA, Maenetja KP, Ngoepe PE, Woodley SM, Catlowa CRA, Grau-Crespo R (2013) Lithium and oxygen adsorption at the β-MnO2 (110) surface. J Mater Chem A 1:14879–14887CrossRefGoogle Scholar
  28. 28.
    Bengtsson L (1999) Dipole correction for surface supercell calculations. Phys Rev B 59:12301–12304CrossRefGoogle Scholar
  29. 29.
    Niimura N, Shimaoka K, Motegi H, Hoshino S (1972) Crystal structure and phase transition of hydrogen chloride. J Phys Soc Jap 32:1019–1026CrossRefGoogle Scholar
  30. 30.
    Dulmage WJ, Meyers EA, Lipscomb WN (1953) On the crystal and molecular structure of N2O2. Acta Crystallogr 6:760–764CrossRefGoogle Scholar
  31. 31.
    Song WY, Liu J, Zheng HL, Ma SC, Wei YC, Duan AJ, Jiang GY, Zhao Z, Hensen EJM (2015) A mechanistic DFT study of low temperature SCR of NO with NH3 on MnCe1−xO2(111). Catal Sci Technol 6:2120–2128CrossRefGoogle Scholar
  32. 32.
    Li L, Wei ZD, Li LL, Sun CX (2006) Ab initio study of the first electron transfer of O2 on MnO2 surface. Acta Chim Sin 64:287–294Google Scholar
  33. 33.
    Silva JLFD, Stampfl C, Scheffler M (2003) Adsorption of Xe atoms on metal surfaces: new insights from first-principles calculations. Phys Rev Lett 90:103–136CrossRefGoogle Scholar
  34. 34.
    Silva JLFD, Stampfl C, Scheffler M (2005) Xe adsorption on metal surfaces: first-principles investigations. Phys Rev B 72:075424–075443CrossRefGoogle Scholar
  35. 35.
    Du P, Wu P, Cai CX (2015) Mechanistic insight into the facet-dependent adsorption of methanol on a Pt3Ni nanocatalyst. J Phys Chem C 119:18352–18363CrossRefGoogle Scholar
  36. 36.
    Kijlstra WS, Brands DS, Smit HI, Poels E, Bliek A (1997) Mechanism of the selective catalytic reduction of NO with NH3 over MnOx/Al2O3 II Reactivity of adsorbed NH3 and NO complexes. J Catal 171:219–230CrossRefGoogle Scholar
  37. 37.
    Singoredjo L, Korver R, Kapteijn F, Moulijn J (1992) Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Appl Catal B: Environ 1:297–316CrossRefGoogle Scholar
  38. 38.
    Jiang BQ, Li ZG, Lee SC (2013) Mechanism study of the promotional effect of O2 on low-temperature SCR reaction on Fe–Mn/TiO2 by DRIFT. Chem Eng J 225:52–58CrossRefGoogle Scholar
  39. 39.
    Kapteijn F, Marbán G, Mirasol JR, Moulijn J (1997) Kinetic analysis of the decomposition of nitrous oxide over ZSM-5 catalysts. J Catal 167:256–265CrossRefGoogle Scholar
  40. 40.
    Marbán G, Fuertes AB (2002) Kinetics of the low-temperature selective catalytic reduction of NO with NH3 over activated carbon fiber composite-supported iron oxides. Catal Lett 84:13–19CrossRefGoogle Scholar
  41. 41.
    Cao F, Su S, Xiang J, Wang PY, Hu S, Sun LS, Zhang AC (2015) The activity and mechanism study of Fe–Mn–Ce/γ-Al2O3 catalyst for low temperature selective catalytic reduction of NO with NH3. Fuel 139:232–239CrossRefGoogle Scholar
  42. 42.
    Cao F, Xiang J, Su S, Wang PY, Sun LS, Hu S, Lei SY (2014) The activity and characterization of MnOx–CeO2–ZrO2/γ-Al2O3 catalysts for low temperature selective catalytic reduction of NO with NH3. Chem Eng J 243:347–354CrossRefGoogle Scholar
  43. 43.
    Liu ZM, Yi Y, Zhang SX, Zhu TL, Zhu JZ, Wang JG (2013) Selective catalytic reduction of NOx, with NH3 over Mn–Ce mixed oxide catalyst at low temperatures. Catal Today 216:76–81CrossRefGoogle Scholar
  44. 44.
    Chi Y, Chuang SSC (2000) The effect of oxygen concentration on the reduction of NO with propylene over CuO/γ-Al2O3. Catal Today 62:303–318CrossRefGoogle Scholar
  45. 45.
    Xiang J, Wang LL, Cao F, Qian K, Su S, Hu S, Wang Y, Liu LJ (2016) Adsorption properties of NO and NH3 over MnOx based catalyst supported on γ-Al2O3. Chem Eng J 302:570–576CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Energy and EnvironmentAnhui University of TechnologyMaanshanPeople’s Republic of China
  2. 2.National Synchrotron Radiation LaboratoryUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China

Personalised recommendations