Diversiform electrical and thermal expansion properties of (1 − x)Ba0.95Ca0.05Ti0.94Zr0.06O3–(x)Dy lead-free piezoelectric ceramics influenced by defect complexes

  • Yongshang Tian
  • Shuiyun Li
  • Youyang Li
  • Yansheng Gong
  • Xiang Ji
  • Shujie Sun
  • Qiangshan Jing
Ceramics
  • 21 Downloads

Abstract

(1 − x)Ba0.95Ca0.05Ti0.94Zr0.06O3–(x)Dy (x = 0–0.90 mol%) lead-free ceramics were prepared at 1190 °C with as-synthesized nanoparticles via a modified Pechini polymeric precursor method. X-ray powder diffraction, Raman spectrometer, and X-ray photoelectron spectroscopy were used to investigate the phase, symmetry, and valence state, respectively. The results indicated dysprosium could induce the phase transformation from O to R. The mechanism of defect complexes and oxygen vacancies that influenced by various dysprosium contents were discussed in detail. The results of dielectric, ferroelectric, and piezoelectric characteristics suggested the electrical properties were initially elevated with a trifling addition of dysprosium contents, and then decreased with further increased x. Moreover, reasons for diversified electrical properties, i.e., imbalanced long-range and short-range forces, changed octahedron structure, defect dipole, pinching effects of domain wall and element electronegative, were all stated in detail. The optimal physical properties, d33 = 371 pC/N, Qm = 87, and CTE2 = 1.23 × 10−5 K−1, were detected at x = 0.60 mol%, and those findings were regarded as prospect in the development of lead-free ferroelectric ceramic materials.

Notes

Acknowledgements

This work was supported by Henan Provincial Department of Science and Technology Research Project (172102210457) and Nanhu Scholars Program for Young Scholars of XYNU.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Cross E (2004) Materials science: lead-free at last. Nature 432(7013):24–25CrossRefGoogle Scholar
  2. 2.
    Aksel E, Jones JL (2010) Advances in lead-free piezoelectric materials for sensors and actuators. Sensors 10(3):1935–1954CrossRefGoogle Scholar
  3. 3.
    Yao FZ, Wang K, Jo W et al (2016) Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv Funct Mater 26(8):1217–1224CrossRefGoogle Scholar
  4. 4.
    Rödel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177CrossRefGoogle Scholar
  5. 5.
    Zeches RJ, Rossell MD, Zhang JX et al (2009) A strain-driven morphotropic phase boundary in BiFeO3. Science 326(5955):977–980CrossRefGoogle Scholar
  6. 6.
    Wu J, Xiao D, Zhu J (2015) Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem Rev 115(7):2559–2595CrossRefGoogle Scholar
  7. 7.
    Wang X, Wu J, Xiao D et al (2014) Giant piezoelectricity in potassium-sodium niobate lead-free ceramics. J Am Chem Soc 136(7):2905–2910CrossRefGoogle Scholar
  8. 8.
    Liu W, Ren X (2009) Large piezoelectric effect in Pb-free ceramics. Phys Rev Lett 103(25):257602CrossRefGoogle Scholar
  9. 9.
    Keeble DS, Benabdallah F, Thomas PA, Maglione M, Kreisel J (2013) Revised structural phase diagram of (Ba0.7Ca0.3TiO3)–(BaZr0.2Ti0.8O3). Appl Phys Lett 102(9):092903CrossRefGoogle Scholar
  10. 10.
    Dong L, Stone DS, Lakes RS (2012) Enhanced dielectric and piezoelectric properties of xBaZrO3–(1 − x)BaTiO3 ceramics. J Appl Phys 111(8):084107CrossRefGoogle Scholar
  11. 11.
    Wang P, Li Y, Lu Y (2011) Enhanced piezoelectric properties of (Ba0.85Ca0.15)(Ti0.9Zr0.1)O3 lead-free ceramics by optimizing calcination and sintering temperature. J Eur Ceram Soc 31(11):2005–2012CrossRefGoogle Scholar
  12. 12.
    Zhou C, Feteira A, Shan X et al (2012) Remarkably high-temperature stable piezoelectric properties of Bi(Mg0.5Ti0.5)O3 modified BiFeO3–BaTiO3 ceramics. Appl Phys Lett 101(3):032901CrossRefGoogle Scholar
  13. 13.
    Chen T, Zhang T, Wang G, Zhou J, Zhang J, Liu Y (2012) Effect of CuO on the microstructure and electrical properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 piezoceramics. J Mater Sci 47(11):4612–4619.  https://doi.org/10.1007/s10853-012-6326-1 CrossRefGoogle Scholar
  14. 14.
    Yang WG, Zhang BP, Ma N, Zhao L (2012) High piezoelectric properties of BaTiO3xLiF ceramics sintered at low temperatures. J Eur Ceram Soc 32(4):899–904CrossRefGoogle Scholar
  15. 15.
    Li SB, Wang CB, Ji X, Shen Q, Zhang LM (2016) Effect of composition fluctuation on structural and electrical properties of BZT–xBCT ceramics prepared by plasma activated sintering. J Eur Ceram Soc 37(5):2067–2072CrossRefGoogle Scholar
  16. 16.
    Benabdallah F, Elissalde C, Seu UCC et al (2015) Structure-microstructure-property relationships in lead-free BCTZ piezoceramics processed by conventional sintering and spark plasma sintering. J Eur Ceram Soc 35(15):4153–4161CrossRefGoogle Scholar
  17. 17.
    Tian YS, Li SY, Gong YS, Meng DW, Wang JP, Jing QS (2017) Effects of Er3+–doping on dielectric and piezoelectric properties of 0.5Ba0.9Ca0.1TiO3–0.5BaTi0.88Zr0.12O3–0.12%La–xEr lead-free ceramics. J Alloy Compd 692:797–804CrossRefGoogle Scholar
  18. 18.
    Bai W, Chen D, Li P, Shen B, Zhai J, Ji Z (2016) Enhanced electromechanical properties in-textured (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. Ceram Int 42(2):3429–3436CrossRefGoogle Scholar
  19. 19.
    Ma J, Liu X, Li W (2013) High piezoelectric coefficient and temperature stability of Ga2O3-doped (Ba0.99Ca0.01)(Zr0.02Ti0.98)O3 lead-free ceramics by low-temperature sintering. J Alloy Compd 581(5):642–645CrossRefGoogle Scholar
  20. 20.
    Li W, Xu Z, Chu R, Fu P, Zhang G (2011) Temperature stability in Dy-doped (Ba0.99Ca0.01)(Ti0.98Zr0.02)O3 lead-free ceramics with high piezoelectric coefficient. J Am Ceram Soc 94(10):3181–3183CrossRefGoogle Scholar
  21. 21.
    Damjanovic D (2010) A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl Phys Lett 97(6):062906CrossRefGoogle Scholar
  22. 22.
    Eichel RA, Erünal E, Jakes P et al (2013) Interactions of defect complexes and domain walls in CuO-doped ferroelectric (K, Na)NbO3. Appl Phys Lett 102(24):242908CrossRefGoogle Scholar
  23. 23.
    Messing GL, Poterala S, Chang Y et al (2017) Texture-engineered ceramics—property enhancements through crystallographic tailoring. J Mater Res 32(17):3219–3241CrossRefGoogle Scholar
  24. 24.
    Tian YS, Gong YS, Zhang ZL, Meng DW (2014) Phase evolutions and electric properties of BaTiO3 ceramics by a low-temperature sintering process. J Mater Sci Mater Electron 25(12):5467–5474CrossRefGoogle Scholar
  25. 25.
    Avrahami Y, Tuller HL (2004) Improved electromechanical response in rhombohedral BaTiO3. J Electroceram 13(1–3):463–469CrossRefGoogle Scholar
  26. 26.
    Wu J, Xiao D, Wu W, Chen Q, Zhu J, Yang Z, Wang J (2011) Role of room-temperature phase transition in the electrical properties of (Ba, Ca)(Ti, Zr)O3 ceramics. Scr Mater 65(9):771–774CrossRefGoogle Scholar
  27. 27.
    Jiang M, Lin Q, Lin D et al (2013) Effects of MnO2 and sintering temperature on microstructure, ferroelectric, and piezoelectric properties of Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics. J Mater Sci 48(3):1035–1041.  https://doi.org/10.1007/s10853-012-6835-y CrossRefGoogle Scholar
  28. 28.
    Lin W, Fan L, Lin D, Zheng Q, Fan X, Sun H (2013) Phase transition, ferroelectric and piezoelectric properties of Ba1−xCaxTi1−yZryO3 lead-free ceramics. Curr Appl Phys 13(1):159–164CrossRefGoogle Scholar
  29. 29.
    Qu B, Du H, Yang Z (2016) Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability. J Mater Chem C 4(9):1795–1803CrossRefGoogle Scholar
  30. 30.
    Liu W, Wang J, Ke X, Li S (2017) Large piezoelectric performance of Sn doped BaTiO3 ceramics deviating from quadruple point. J Alloy Compd 712:1–6CrossRefGoogle Scholar
  31. 31.
    Zhou PF, Zhang BP, Zhao L, Zhu LF (2015) Effect of LiF addition on phase structure and piezoelectric properties of (Ba, Ca)(Ti, Sn)O3 ceramics sintered at low temperature. Ceram Int 41(3):4035–4041CrossRefGoogle Scholar
  32. 32.
    Li Z, Wu J, Xiao D, Zhu J, Wu W (2016) Colossal permittivity in titanium dioxide ceramics modified by tantalum and trivalent elements. Acta Mater 103:243–251CrossRefGoogle Scholar
  33. 33.
    Lv J, Lou X, Wu J (2016) Defect dipoles-induced poling characteristics and ferroelectricity of quenched bismuth ferrite-based ceramics. J Mater Chem C 4(25):6140–6151CrossRefGoogle Scholar
  34. 34.
    Graves PR, Hua G, Myhra S, Thompson JG (1995) The Raman modes of the aurivillius phases: Temperature and polarization dependence. J Solid State Chem 114(1):112–122CrossRefGoogle Scholar
  35. 35.
    Hayati R, Bahrevar MA, Ebadzadeh T, Rojas V, Novak N, Koruza J (2016) Effects of Bi2O3 additive on sintering process and dielectric, ferroelectric, and piezoelectric properties of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoceramics. J Eur Ceram Soc 36(14):3391–3400CrossRefGoogle Scholar
  36. 36.
    Bahrin F, Khemakhem H (2014) Raman and dielectric investigation of (Ba0.9−xSrxCa0.1)(Ti0.8Zr0.2)O3 ferroelectric ceramics. Ceram Int 40(6):7909–7913CrossRefGoogle Scholar
  37. 37.
    Morrison FD, Sinclair DC, Skakle JMS, West AR (1998) Novel doping mechanism for very-high-permittivity barium titanate ceramics. J Am Ceram Soc 81(7):1957–1960CrossRefGoogle Scholar
  38. 38.
    Tian YS, Li SY, Sun SL, Gong YS, Li TT, Yu YS, Jing QS (2018) Influence of europium-doping on various electrical properties of low temperature sintered 0.5Ba0.90Ca0.10TiO3–0.5BaTi0.88Zr0.12O3–0.1%CuO–xEu lead-free ceramics. J Electron Mater 47(1):684–691CrossRefGoogle Scholar
  39. 39.
    Hao J, Bai W, Li W (2012) Correlation between the microstructure and electrical properties in high-performance (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 lead-free piezoelectric ceramics. J Am Ceram Soc 95(6):1998–2006CrossRefGoogle Scholar
  40. 40.
    Coondoo I, Panwar N, Amorín H, Alguero M, Kholkin AL (2013) Synthesis and characterization of lead-free 0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3 ceramic. J Appl Phys 113(21):214107CrossRefGoogle Scholar
  41. 41.
    Zhang Y, Sun HJ, Chen W (2015) Influence of cobalt and sintering temperature on structure and electrical properties of BaZr0.05Ti0.95O3 ceramics. Ceram Int 41(7):8520–8532CrossRefGoogle Scholar
  42. 42.
    Ehmke MC, Daniels J, Glaum J, Hoffman M, Blendell JE, Bowman KJ (2013) In situ X-ray diffraction of biased ferroelastic switching in tetragonal lead-free (1 − x)Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 piezoelectrics. J Am Ceram Soc 96(9):2913–2920CrossRefGoogle Scholar
  43. 43.
    Badapanda T, Sarangi S, Behera B et al (2015) Optical and dielectric study of strontium modified barium zirconium titanate ceramic prepared by high energy ball milling. J Alloy Compd 645:586–596CrossRefGoogle Scholar
  44. 44.
    Saito Y, Takao H, Tani T et al (2004) Lead-free piezoceramics. Nature 432(7013):84–87CrossRefGoogle Scholar
  45. 45.
    Hunpratub S, Phokha S, Maensiri S, Chindaprasirt P (2016) Dielectric and piezoelectric properties of lead-free Ba0.85Ca0.15Ti0.9−xZr0.1CuxO3 ceramics synthesized by a hydrothermal method. Appl Surf Sci 369:334–340CrossRefGoogle Scholar
  46. 46.
    Srinivas A, Krishnaiah RV, Iranjani VLN, Kamat SV, Karthik T, Asthana S (2015) Ferroelectric, piezoelectric and mechanical properties in lead free (0.5)Ba(Zr0.2Ti0.8)O3–(0.5)(Ba0.7Ca0.3)TiO3 electroceramics. Ceram Int 41(2):1980–1985CrossRefGoogle Scholar
  47. 47.
    He Y (2004) Heat capacity, thermal conductivity, and thermal expansion of barium titanate-based ceramics. Thermochim Acta 419(1–2):135–141CrossRefGoogle Scholar
  48. 48.
    Xu Q, Huang DP, Chen W, Zhang F, Wang BT (2007) Structure, electrical conducting and thermal expansion properties of Ln0.6Sr0.4Co0.2Fe0.8O3 (Ln = La, Pr, Nd, Sm) perovskite-type complex oxides. J Alloy Compd 429(1–2):34–39CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Henan Province Key Laboratory of Utilization of Non–Metallic Mineral in the South of Henan, College of Chemistry and Chemical EngineeringXinyang Normal UniversityXinyangPeople’s Republic of China
  2. 2.Faculty of Material Science and ChemistryChina University of GeosciencesWuhanPeople’s Republic of China
  3. 3.State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanPeople’s Republic of China
  4. 4.School of Materials and Chemical TechnologyTokyo Institute of TechnologyTokyoJapan

Personalised recommendations