Advertisement

Journal of Materials Science

, Volume 53, Issue 16, pp 11403–11414 | Cite as

Construction of iron porphyrin/titanoniobate nanosheet sensors for the sensitive detection of nitrite

  • Mengjun Wang
  • Zichun Fan
  • Liqiang Yi
  • Jiasheng Xu
  • Xiaobo Zhang
  • Zhiwei Tong
Composites
  • 251 Downloads

Abstract

The single-layered well-dispersed HTi2NbO7 nanosheets (NSs) with the thickness of ~ 1.08 nm were obtained by a simple exfoliation method. The electrochemical sensors based on HTi2NbO7 NSs and 5,10,15,20-tetrakis (N-methylpyridinium-4-yl) porphyrinato iron(III) (FeTMPyP) for sensitive detection of nitrite were then fabricated through the self-assembly technique, which was certified by Zeta potential analysis. The prepared samples were fully characterized by X-ray diffraction, X-ray energy dispersive spectrometer, scanning electron microscope, atomic force microscope, high-resolution transmission electron microscope, Fourier transform infrared and ultraviolet–visible spectrum. Electrochemical measurements demonstrated that FeTMPyP/HTi2NbO7 NSs nanocomposites exhibited enhanced electrocatalytic activities toward the oxidation of nitrite due to increased electron-transport properties. The oxidation peak current of nitrite was linearly associated with its concentration in the range from 0.0999 to 3.15 mmol L−1, with the detection limit of 3.15 × 10−5 mol L−1 (S/N = 3). The possible mechanism for nitrite oxidation on the surface of modified electrode was proposed. This study indicated that this biosensor has satisfactory stability, and detects nitrite in wastewater with strong anti-interference performance and good recovery.

Notes

Acknowledgements

This work was supported by Natural Science Fund of Jiangsu Province (BK20161294), HHIT Research Project (Z2015011), Lianyungang Science Project (CG1602), and the University Science Research Project of Jiangsu Province (15KJB430004).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2423_MOESM1_ESM.docx (362 kb)
Supplementary material 1 (DOCX 362 kb)

References

  1. 1.
    Adarsh N, Shanmugasundaram M, Ramaiah D (2013) Efficient reaction based colorimetric probe for sensitive detection, quantification, and on-site analysis of nitrite ions in natural water resources. Anal Chem 85:10008–10012.  https://doi.org/10.1021/ac4031303 CrossRefGoogle Scholar
  2. 2.
    Zhang Y, Su Z, Li B, Zhang L, Fan D, Ma H (2016) Recyclable magnetic mesoporous nanocomposite with improved sensing performance toward nitrite. ACS Appl Mater Int 8:12344–12351.  https://doi.org/10.1021/acsami.6b02133 CrossRefGoogle Scholar
  3. 3.
    Ferreira IMPLVO, Silva S (2008) Quantification of residual nitrite and nitrate in ham by reverse-phase high performance liquid chromatography/diode array detector. Talanta 74:1598–1602.  https://doi.org/10.1016/j.talanta.2007.10.004 CrossRefGoogle Scholar
  4. 4.
    Zhao Z, Xia Z, Liu C, Huang H, Ye W (2017) Green synthesis of Pd/Fe3O4 composite based on polyDOPA functionalized reduced graphene oxide for electrochemical detection of nitrite in cured food. Electrochim Acta 256:146–154.  https://doi.org/10.1016/j.electacta.2017.09.185 CrossRefGoogle Scholar
  5. 5.
    Zou CE, Yang B, Bin D, Wang J, Li S, Yang P, Wang C, Shiraishi Y, Du Y (2017) Electrochemical synthesis of gold nanoparticles decorated flower-like graphene for high sensitivity detection of nitrite. J Colloid Interface Sci 488:135–141.  https://doi.org/10.1016/j.jcis.2016.10.088 CrossRefGoogle Scholar
  6. 6.
    Wang P, Wang M, Zhou F, Yang G, Qu L, Miao X (2017) Development of a paper-based, inexpensive, and disposable electrochemical sensing platform for nitrite detection. Electrochem Commun 81:74–78.  https://doi.org/10.1016/j.elecom.2017.06.006 CrossRefGoogle Scholar
  7. 7.
    Wang P, Mai Z, Dai Z, Li Y, Zou X (2009) Construction of Au nanoparticles on choline chloride modified glassy carbon electrode for sensitive detection of nitrite. Biosens Bioelectron 24:3242–3247.  https://doi.org/10.1016/j.bios.2009.04.006 CrossRefGoogle Scholar
  8. 8.
    Mani V, Periasamy AP, Chen SM (2012) Highly selective amperometric nitrite sensor based on chemically reduced graphene oxide modified electrode. Electrochem Commun 17:75–78.  https://doi.org/10.1016/j.elecom.2012.02.009 CrossRefGoogle Scholar
  9. 9.
    Li Y, Wang P, Wang L, Lin X (2007) Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron 22:3120–3125.  https://doi.org/10.1016/j.bios.2007.02.001 CrossRefGoogle Scholar
  10. 10.
    Wang P, Zhou F, Wang Z, Lai C, Han X (2015) Substrate-induced assembly of PtAu alloy nanostructures at choline functionalized monolayer interface for nitrite sensing. J Electroanal Chem 750:36–42.  https://doi.org/10.1016/j.jelechem.2015.05.006 CrossRefGoogle Scholar
  11. 11.
    Kung CW, Chang TH, Chou LY, Hupp JT, Farha OK, Ho KC (2015) Porphyrin-based metal–organic framework thin films for electrochemical nitrite detection. Electrochem Commun 58:51–56.  https://doi.org/10.1016/j.elecom.2015.06.003 CrossRefGoogle Scholar
  12. 12.
    Wu H, Fan S, Jin X, Zhang H, Chen H, Dai Z, Zou X (2014) Construction of a zinc porphyrin–fullerene-derivative based nonenzymatic electrochemical sensor for sensitive sensing of hydrogen peroxide and nitrite. Anal Chem 86:6285–6290.  https://doi.org/10.1021/ac500245k CrossRefGoogle Scholar
  13. 13.
    Kemmegne-Mbouguen JC, Angnes L (2015) Simultaneous quantification of ascorbic acid, uric acid and nitrite using a clay/porphyrin modified electrode. Sens Actuators B Chem 212:464–471.  https://doi.org/10.1016/j.snb.2015.02.046 CrossRefGoogle Scholar
  14. 14.
    Winnischofer H, de Souza Lima S, Araki K, Toma HE (2003) Electrocatalytic activity of a new nanostructured polymeric tetraruthenated porphyrin film for nitrite detection. Anal Chim Acta 480:97–107.  https://doi.org/10.1016/s0003-2670(02)01594-5 CrossRefGoogle Scholar
  15. 15.
    Liu C, Zhu H, Zhu Y, Dong P, Hou H, Xu Q, Chen X, Xi X, Hou W (2018) Ordered layered N-doped KTiNbO5/g-C3N4 heterojunction with enhanced visible light photocatalytic activity. Appl Catal B Environ 228:54–63.  https://doi.org/10.1016/j.apcatb.2018.01.074 CrossRefGoogle Scholar
  16. 16.
    Zhai Z, Hu C, Yang X, Zhang L, Liu C, Fan Y, Hou W (2012) Nitrogen-doped mesoporous nanohybrids of TiO2 nanoparticles and HTiNbO5 nanosheets with a high visible-light photocatalytic activity and a good biocompatibility. J Mater Chem 22:19122–19131.  https://doi.org/10.1039/c2jm32338a CrossRefGoogle Scholar
  17. 17.
    Zhai Z, Huang Y, Xu L, Yang X, Hu C, Zhang L, Fan Y, Hou W (2011) Thermostable nitrogen-doped HTiNbO5 nanosheets with a high visible-light photocatalytic activity. Nano Res. 4:635–647.  https://doi.org/10.1007/s12274-011-0119-8 CrossRefGoogle Scholar
  18. 18.
    Liu C, Han R, Ji H, Sun T, Zhao J, Chen N, Chen J, Guo X, Hou W, Ding W (2016) S-doped mesoporous nanocomposite of HTiNbO5 nanosheets and TiO2 nanoparticles with enhanced visible light photocatalytic activity. Phys Chem Chem Phys 18:801–810.  https://doi.org/10.1039/c5cp06555k CrossRefGoogle Scholar
  19. 19.
    Zhai Z, Yang X, Xu L, Hu C, Zhang L, Hou W, Fan Y (2012) Novel mesoporous NiO/HTiNbO5 nanohybrids with high visible-light photocatalytic activity and good biocompatibility. Nanoscale 4:547–556.  https://doi.org/10.1039/c1nr11091h CrossRefGoogle Scholar
  20. 20.
    Xin H, Ma R, Wang L, Ebina Y, Takada K, Sasaki T (2004) Photoluminescence properties of lamellar aggregates of titania nanosheets accommodating rare earth ions. Appl Phys Lett 85:4187–4189.  https://doi.org/10.1063/1.1812811 CrossRefGoogle Scholar
  21. 21.
    Akatsuka K, Haga MA, Ebina Y, Osada M, Fukuda K, Sasaki T (2009) Construction of highly ordered lamellar nanostructures through Langmuir–Blodgett deposition of molecularly thin titania nanosheets tens of micrometers wide and their excellent dielectric properties. ACS Nano 3:1097–1106.  https://doi.org/10.1021/nn900104u CrossRefGoogle Scholar
  22. 22.
    Osada M, Ebina Y, Funakubo H, Yokoyama S, Kiguchi T, Takada K, Sasaki T (2006) High-κ dielectric nanofilms fabricated from Titania nanosheets. Adv Mater 18:1023–1027.  https://doi.org/10.1002/adma.200501224 CrossRefGoogle Scholar
  23. 23.
    Schaak RE, Mallouk TE (2002) Exfoliation of layered rutile and perovskite tungstates. Chem Commun 7:706–707.  https://doi.org/10.1039/b110220f CrossRefGoogle Scholar
  24. 24.
    Sasaki T, Ebina Y, Tanaka T, Harada M, Watanabe M, Decher G (2001) Layer-by-layer assembly of titania nanosheet/polycation composite films. Chem Mater 13:4661–4667.  https://doi.org/10.1021/cm010478h CrossRefGoogle Scholar
  25. 25.
    Dias AS, Lima S, Carriazo D, Rives V, Pillinger M, Valente AA (2006) Exfoliated titanate, niobate and titanoniobate nanosheets as solid acid catalysts for the liquid-phase dehydration of D-xylose into furfural. J Catal 244:230–237.  https://doi.org/10.1016/j.jcat.2006.09.010 CrossRefGoogle Scholar
  26. 26.
    Xie K, Wei W, Yu H, Deng M, Ke S, Zeng X, Li Z, Shen C, Wang J, Wei B (2016) Use of a novel layered titanoniobate as an anode material for long cycle life sodium ion batteries. RSC Adv 6:35746–35750.  https://doi.org/10.1039/c6ra02530g CrossRefGoogle Scholar
  27. 27.
    Takagaki A, Yoshida T, Lu D, Kondo JN, Hara M, Domen K, Hayashi S (2004) Titanium niobate and titanium tantalate nanosheets as strong solid acid catalysts. J Phys Chem B 108:11549–11555.  https://doi.org/10.1021/jp049170e CrossRefGoogle Scholar
  28. 28.
    Akatsuka K, Takanashi G, Ebina Y, Haga MA, Sasaki T (2012) Electronic band structure of exfoliated titanium-and/or niobium-based oxide nanosheets probed by electrochemical and photoelectrochemical measurements. J Phys Chem C 116:12426–12433.  https://doi.org/10.1021/jp302417a CrossRefGoogle Scholar
  29. 29.
    Shibata T, Takanashi G, Nakamura T, Fukuda K, Ebina Y, Sasaki T (2011) Titanoniobate and niobate nanosheet photocatalysts: superior photoinduced hydrophilicity and enhanced thermal stability of unilamellar Nb3O8 nanosheet. Energy Environ Sci 4:535–542.  https://doi.org/10.1039/c0ee00437e CrossRefGoogle Scholar
  30. 30.
    He J, Li QJ, Tang Y, Yang P, Li A, Li R, Li HZ (2012) Characterization of HNbMoO6, HNbWO6 and HTiNbO5 as solid acids and their catalytic properties for esterification reaction. Appl Catal A Gen 443:145–152.  https://doi.org/10.1016/j.apcata.2012.07.036 CrossRefGoogle Scholar
  31. 31.
    Pan B, Zhao W, Zhang X, Li J, Xu J, Ma J, Liu L, Zhang D, Tong Z (2016) Research on the self-assembly of exfoliated perovskite nanosheets (LaNb2O7 ) and cobalt porphyrin utilized for the electrocatalytic oxidation of ascorbic acid. RSC Adv 6:46388–46393.  https://doi.org/10.1039/c6ra06429a CrossRefGoogle Scholar
  32. 32.
    Tong Z, Shichi T, Takagi K (2002) Visible-light induced charge-separation between consecutively cast porphyrin and methyl viologen multilayered titanoniobate hybrid films. J Phys Chem B 106:13306–13310.  https://doi.org/10.1021/jp021162f CrossRefGoogle Scholar
  33. 33.
    Ma J, Wu J, Zheng J, Liu L, Zhang D, Xu X, Yang X, Tong Z (2012) Synthesis, characterization and electrochemical behavior of cationic iron porphyrin intercalated into layered niobates. Microporous Mesoporous Mater 151:325–329.  https://doi.org/10.1016/j.micromeso.2011.10.016 CrossRefGoogle Scholar
  34. 34.
    Zhang X, Wang M, Li D, Liu L, Ma J, Gong J, Yang X, Xu X, Tong Z (2013) Electrochemical investigation of a novel metalloporphyrin intercalated layered niobate modified electrode and its electrocatalysis on ascorbic acid. J Solid State Electron 17:3177–3184.  https://doi.org/10.1007/s10008-013-2230-0 CrossRefGoogle Scholar
  35. 35.
    Wang Q, Lei J, Deng S, Zhang L, Ju H (2013) Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem Commun 49:916–918.  https://doi.org/10.1039/c2cc37664d CrossRefGoogle Scholar
  36. 36.
    Suslick KS, Watson RA (1992) The photochemistry of chromium, manganese, and iron porphyrin complexes. New J Chem 16:633–642Google Scholar
  37. 37.
    Hou Y, Zuo F, Dagg A, Feng PY (2013) A three-dimensional branched cobalt-doped α-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chem 125:1286–1290.  https://doi.org/10.1002/ange.201207578 CrossRefGoogle Scholar
  38. 38.
    Zhang X, Feng D, Chen M, Ding Z, Tong Z (2009) Preparation and electrochemical behavior of methylene blue intercalated into layered niobate K4Nb6O17. J Mater Sci 44:3020–3025.  https://doi.org/10.1007/s10853-009-3398-7 CrossRefGoogle Scholar
  39. 39.
    Sousa AL, Santos WJ, Luz RC, Damos FS, Kubota LT, Tanaka AA, Tanaka SM (2008) Amperometric sensor for nitrite based on copper tetrasulphonated phthalocyanine immobilized with poly-l-lysine film. Talanta 75:333–338.  https://doi.org/10.1016/j.talanta.2007.10.016 CrossRefGoogle Scholar
  40. 40.
    Yang B, Wang J, Bin D, Zhu M, Yang P, Du Y (2015) A three dimensional Pt nanodendrite/graphene/MnO2 nanoflower modified electrode for the sensitive and selective detection of dopamine. J Mater Chem B 3:7440–7448.  https://doi.org/10.1039/c5tb01031d CrossRefGoogle Scholar
  41. 41.
    Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28.  https://doi.org/10.1016/s0022-0728(79)80075-3 CrossRefGoogle Scholar
  42. 42.
    Armijo F, Goya MC, Reina M, Canales MJ, Arévalo MC, Aguirre MJ (2007) Electrocatalytic oxidation of nitrite to nitrate mediated by Fe(III) poly-3-aminophenyl porphyrin grown on five different electrode surfaces. J Mol Catal A Chem 268:148–154.  https://doi.org/10.1016/j.molcata.2006.11.055 CrossRefGoogle Scholar
  43. 43.
    Brylev O, Sarrazin M, Roué L, Bélanger D (2007) Nitrate and nitrite electrocatalytic reduction on Rh-modified pyrolytic graphite electrodes. Electrochim Acta 52:6237–6247.  https://doi.org/10.1016/j.electacta.2007.03.072 CrossRefGoogle Scholar
  44. 44.
    Lin A, Wen Y, Zhang L, Lu B, Li Y, Jiao Y, Yang H (2011) Layer-by-layer construction of multi-walled carbon nanotubes zinc oxide, and gold nanoparticles integrated composite electrode for nitrite detection. Electrochim Acta 56:1030–1036.  https://doi.org/10.1016/j.electacta.2010.10.058 CrossRefGoogle Scholar
  45. 45.
    Pan B, Ma J, Zhang X, Li J, Liu L, Zhang D, Yang M, Tong Z (2015) A laminar nanocomposite constructed by self-assembly of exfoliated α-ZrP nanosheets and manganese porphyrin for use in the electrocatalytic oxidation of nitrite. J Mater Sci 50:6469–6476.  https://doi.org/10.1007/s10853-015-9205-8 CrossRefGoogle Scholar
  46. 46.
    Liu SY, Chen YP, Fang F, Li SH, Ni BJ, Liu G, Tian Y, Xiong Y, Yu HQ (2008) Innovative solid-state microelectrode for nitrite determination in a nitrifying granule. Environ Sci Technol 42:4467–4471.  https://doi.org/10.1021/es800409s CrossRefGoogle Scholar
  47. 47.
    Ojani R, Raoof JB, Zarei E (2008) Poly (ortho-toluidine) modified carbon paste electrode: a sensor for electrocatalytic reduction of nitrite. Electroanalysis 20:379–385.  https://doi.org/10.1002/elan.200704045 CrossRefGoogle Scholar
  48. 48.
    Hu F, Chen S, Wang C, Yuan R, Yuan D, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46.  https://doi.org/10.1016/j.aca.2012.02.037 CrossRefGoogle Scholar
  49. 49.
    do Carmo DR, Paim LL, Metzker G, Dias Filho NL, Stradiotto NR (2010) A novel nanostructured composite formed by interaction of copper octa (3-aminopropyl) octasilsesquioxane with azide ligands: preparation, characterization and a voltammetric application. Mater Res Bull 45:1263–1270.  https://doi.org/10.1016/j.materresbull.2010.05.005 CrossRefGoogle Scholar
  50. 50.
    Wang H, Huang Y, Tan Z, Hu X (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13–17.  https://doi.org/10.1016/j.aca.2004.08.060 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Chemical EngineeringHuaihai Institute of TechnologyLianyungangChina
  2. 2.SORSTJapan Science and Technology Agency (JST)Kawaguchi-shiJapan

Personalised recommendations