Journal of Materials Science

, Volume 53, Issue 17, pp 12492–12503 | Cite as

Biaxial fatigue property enhancement of gradient ultra-fine-grained Zircaloy-4 prepared by surface mechanical rolling treatment

Metals

Abstract

Surface mechanical rolling treatment (SMRT) was applied to modify the microstructure and biaxial fatigue properties of Zircaloy-4 tubes. Gradient ultra-fine microstructural layers of ~ 500 μm in-depth from the outside surface were fabricated on rods. Residual compressive stresses with gradient distribution were simultaneously produced. Biaxial tension–torsion fatigue test was conducted to assess the effect of modified microstructures and residual stress on the fatigue lifetime and deformed substructure of Zircaloy-4. The results show that the SMRT Zircaloy-4 alloy possesses more than double biaxial fatigue lifetime than that of the as-received Zircaloy-4 without SMRT at a tension–torsion stress ratio of 1.0. Microstructural examination reveals that the SMRT Zircaloy-4 alloy shows sequential deformation characteristics at different layers across the tubular wall during biaxial fatigue. The fatigued dislocation configuration changes from dislocation cells within the depth of 200 μm, to bent lamellar structures at the depth of ~ 300 μm, and embryonic dislocation cells at the depth of ~ 500 μm. The enhancement of biaxial fatigue life in the SMRT Zircaloy-4 can be attributed to the combined effects of the gradient ultra-fine structure and the gradient residual compressive stress in the vicinity of surface suppress the fatigue crack initiation and propagation.

Notes

Acknowledgements

This project was financially supported by the National Natural Science Foundation of China (51471129, 51671158, 51621063), 973 Program of China (2014CB644003), and the 111 Project of China (B06025).

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    Zinkle SJ, Was GS (2013) Materials challenges in nuclear energy. Acta Mater 61:735–758CrossRefGoogle Scholar
  2. 2.
    Cox B (2005) Some thoughts on the mechanisms of in-reactor corrosion of zirconium alloys. J Nucl Mater 336(2–3):331–368CrossRefGoogle Scholar
  3. 3.
    Jin N, Yang YQ, Luo X, Xia ZH (2013) Development of CVD Ti-containing films. Prog Mater Sci 58:1490–1533CrossRefGoogle Scholar
  4. 4.
    Shi XY, Liu Y, Li DJ, Chen B, Zeng XQ, Lu J, Ding WJ (2015) Microstructure evolution and mechanical properties of an Mg–Gd alloy subjected to surface mechanical attrition treatment. Mater Sci Eng A 630:146–154CrossRefGoogle Scholar
  5. 5.
    Zhang T, Wang DP, Wang Y, Deng CY, Gong BM (2013) Surface alloying method of ultrasonic shot peening on iron surface. Appl Surf Sci 265:671–676CrossRefGoogle Scholar
  6. 6.
    Lee WH, Kim SJ, Lee WJ et al (2001) Mechanism of surface modification of a porous-coated Ti–6Al–4V implant fabricated by electrical resistance sintering. J Mater Sci 36:3573–3577.  https://doi.org/10.1023/A:1017905305737 CrossRefGoogle Scholar
  7. 7.
    Li W, Liu P, Ma FC, Rong YH (2009) Microstructural characterization of nanocrystalline nickel produced by surface mechanical attrition treatment. J Mater Sci 44:2925–2930.  https://doi.org/10.1007/s10853-009-3386-y CrossRefGoogle Scholar
  8. 8.
    Huang HW, Wang ZB, Lu J, Lu K (2015) Fatigue behaviors of AISI 316L stainless steel with a gradient nanostructured surface layer. Acta Mater 87:150–160CrossRefGoogle Scholar
  9. 9.
    Lu K, Lu J (1999) Surface nanocrystallization (SNC) of metallic materials presentation of the concept behind a new approach. J Mater Sci Technol 15:193–197CrossRefGoogle Scholar
  10. 10.
    Chen K, Yang HM, Gao JS, Yang Y (2018) Microstructure detection of Mg–Zi–Ti–Si amorphous composite coating prepared by SMAT. Mater Charact 135:265–269CrossRefGoogle Scholar
  11. 11.
    Tao NR, Wang ZB, Tong WP (2002) An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater 50:4603–4616CrossRefGoogle Scholar
  12. 12.
    Wang K, Tao NR, Liu G, Lu J, Lu K (2006) Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater 54:5281–5291CrossRefGoogle Scholar
  13. 13.
    Zhu KY, Vassel A, Brisset F, Lu K, Lu J (2004) Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater 52:4101–4110CrossRefGoogle Scholar
  14. 14.
    Wang Q, Yin YF, Sun QY, Xiao L, Sun J (2014) Gradient nano microstructure and its formation mechanism in pure titanium produced by surface rolling treatment. J Mater Res 29:569–577CrossRefGoogle Scholar
  15. 15.
    Legrand PB (1984) Relations entre la structure électronique et la facilité de glissement dans les métaux hexagonaux compacts. Philos Mag B 49:171–184CrossRefGoogle Scholar
  16. 16.
    Fang TH, Li WL, Tao NR, Lu K (2011) Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper. Science 133:1587–1590CrossRefGoogle Scholar
  17. 17.
    Wu XL, Jiang P, Chen L, Yuan F, Zhu YT (2014) Extraordinary strain hardening by gradient structure. Proc Natl Acad Sci 111(20):7197CrossRefGoogle Scholar
  18. 18.
    Unal O, Varol R (2015) Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening. Appl Surf Sci 351:289–295CrossRefGoogle Scholar
  19. 19.
    Jelliti S, Richard C, Retraint D, Roland T, Chemkhi M, Demangel C (2013) Effect of surface nanocrystallization on the corrosion behavior of Ti–6Al–4V titanium alloy. Surf Coat Technol 224:82–87CrossRefGoogle Scholar
  20. 20.
    Amanova A, Cho IS, Pyun YS (2016) Microstructural evolution and surface properties of nanostructured Cu-based alloy by ultrasonic nanocrystalline surface modification Technique. Appl Surf Sci 388:185–195CrossRefGoogle Scholar
  21. 21.
    Li D, Chen HN, Xu H (2009) The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel. Appl Surf Sci 255:3811–3816CrossRefGoogle Scholar
  22. 22.
    Zhuang W, Liu Q, Djugum R, Sharp PK, Paradowska A (2014) Deep surface rolling for fatigue life enhancement of laser clad aircraft aluminium alloy. Appl Surf Sci 320:558–562CrossRefGoogle Scholar
  23. 23.
    Dai K, Shaw L (2008) Analysis of fatigue resistance improvements via surface severe plastic deformation. Int J Fatigue 3:1398–1408CrossRefGoogle Scholar
  24. 24.
    Bagherifard S, Fernandez-Parient I, Ghelichi R, Guagliano M (2014) Effect of severe shot peening on microstructure and fatigue strength of cast iron. Int J Fatigue 65:64–70CrossRefGoogle Scholar
  25. 25.
    Cubillos JM, Coronado JJ, Rodríguez SA (2017) Deep rolling effect on fatigue behavior of austenitic stainless steels. Int J Fatigue 95:120–131CrossRefGoogle Scholar
  26. 26.
    Humphreys FJ, Hatherly M (2004) Recrystallization and related annealing phenomena, 2nd edn. Elsevier, KidlingtonGoogle Scholar
  27. 27.
    Suresh S (1998) Fatigue of materials, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  28. 28.
    Li RH, Zhang ZJ, Zhang P, Zhang ZF (2013) Improved fatigue properties of ultrafine-grained copper under cyclic torsion loading. Acta Mater 61:5857CrossRefGoogle Scholar
  29. 29.
    Schijve J (2008) Fatigue of structures and materials, 2nd edn. Springer, DordrechtGoogle Scholar
  30. 30.
    Zhuang WZ, Halford GR (2001) Investigation of residual stress relaxation under cyclic load. Int J Fatigue 23:31–37CrossRefGoogle Scholar
  31. 31.
    Dalaei K, Karlsson B, Svensson LE (2011) Stability of shot peening induced residual stresses and their influence on fatigue lifetime. Mater Sci Eng A 28:1008–1015CrossRefGoogle Scholar
  32. 32.
    Kumar S, Li XY, Haque A, Gao HJ (2011) Is stress concentration relevant for nanocrystalline metals? Nano Lett 11:2510–2516CrossRefGoogle Scholar
  33. 33.
    Zhang P, Li SX, Zhang ZF (2011) General relationship between strength and hardness. Mater Sci Eng A 529:62–73CrossRefGoogle Scholar
  34. 34.
    Callister WD Jr (2007) Materials science and engineering—an introduction. Wiley, New YorkGoogle Scholar
  35. 35.
    Tiryakioğlu M, Robinson JS, Salazar Guapuriche MA, Zhao YY, Eason PD (2015) Hardness–strength relationships in the aluminum alloy 7010. Mater Sci Eng A 631:196–200CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory for Mechanical Behavior of MaterialsXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations