Skip to main content
Log in

Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Soluble and meltable Zr-containing preceramic polymers were synthesized in this work by the polymerization of ZrCl4 and different diamines, followed by preparation of Zr(C, N) multinary ceramics via pyrolysis. The composition, structure and morphology were investigated by Fourier transform infrared spectroscopy, nuclear magnetic resonance, as well as thermogravimetric-mass spectrometry, X-ray diffraction, elemental analysis, scanning electron microscopy (SEM) and transmission electron microscopy. Results showed that although the precursor could be formed by the reaction between Zr–Cl and N–H bonds, the ceramic yield was low due to the release of NH3 and CH4 gases during the ceramization process. To improve the ceramic yield, allyl amine was applied to tailor the polymer structure. With allyl groups acting as the “bridge” during crosslinking process, the precursor had a higher ceramic yield of 62.5% and melting point of 280–300 °C with Zr content of 49.7 wt% in the derived Zr(C, N) ceramics. Annealing experiments in an inert atmosphere at temperatures in the range of 1200–1400 °C showed the transformation of the amorphous state to dense polycrystalline ceramics. When temperature was increased to 2000 °C, the ceramics got quite dense without obvious phase separation. The precursors could be applied as promising candidates for non-oxide ceramic matrix composites and fibers at ultra-high temperatures and even in harsh environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wie DMV, Drewry DG Jr, King DE (2004) The hypersonic environment: required operating conditions and design challenges. J Mat Sci 39:5915–5924

    Article  Google Scholar 

  2. Monteverde F, Bellosi A, Scatteia L (2008) Processing and properties of ultra-high temperature ceramics for space applications. Mater Sci Eng A 485:415–421

    Article  Google Scholar 

  3. Paul A, Jayaseelan DD, Venugopal S, Zapata-Solvas E, Binner J, Vaidhyanathan B et al (2012) UHTC composites for hypersonic applications. Am Ceram Soc Bull 91:22–28

    Google Scholar 

  4. Fahrenholtz WG, Hilmas GE, Talmy IG (2007) Refractory diborides of zirconium and hafnium. J Am Ceram Soc 90:1347–1364

    Article  Google Scholar 

  5. Luo C, Duan W, Yin X, Kong J (2016) Microwave absorbing polymer-derived ceramics from cobalt coordinated poly(dimethylsilylene)diacetylenes. J Phys Chem C 120:18721–18732

    Article  Google Scholar 

  6. Wang X, Liu J, Hou F, Hu J, Sun X (2015) Synthesis of ZrC–SiC powders from hybrid liquid precursors with improved oxidation resistance. J Am Ceram Soc 98:197–204

    Article  Google Scholar 

  7. Wang H, Gao B, Chen X, Wang J, Chen S, Gou Y (2013) Synthesis and pyrolysis of a novel preceramic polymer PZMS from PMS to fabricate hightemperature-resistant ZrC/SiC ceramic composite. Appl Organomet Chem 27:166–173

    Article  Google Scholar 

  8. Li H, Gou Y, Chen S, Wang H (2017) Preparation and properties of a novel precursor-derived Zr–C–B–N composite ceramic via zirconocene and borazine. Cer Int 44:4097–4104

    Article  Google Scholar 

  9. Zhai S, Park SS, Park M, Ullah MH, Ha C (2007) Direct synthesis of Zr-containing hybrid periodic mesoporous organosilicas with tunable zirconium content. Eur J Inorg Chem 2007:5480–5488

    Article  Google Scholar 

  10. Ma H, Liu H, Zhao J, Xu F, Zhang G (2015) Pressureless sintering, mechanical properties and oxidation behavior of ZrB2 ceramics doped with B4C. J Eur Ceram Soc 35:2699–2705

    Article  Google Scholar 

  11. Chu A, Qin M, Rafiuddin Zhang L, Lu H, Jia B, Qu X (2013) Carbothermal synthesis of ZrC powders using a combustion synthesis precursor. Int J Ref Met H Mat 36:204–210

    Article  Google Scholar 

  12. Ionescu E, Linck C, Fasel C, Muller M, Kleebe HJ, Riedel R (2010) Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J Am Ceram Soc 93:241–250

    Article  Google Scholar 

  13. Walker LS, Corral EL (2014) Structural Influence on the thermal conversion of self-catalyzed HfB2/ZrB2 sol–gel precursors by rapid ultrasonication of oxychloride hydrates. J Am Ceram Soc 97:399–406

    Article  Google Scholar 

  14. Wang H, Chen X, Gao B, Wang J, Wang Y, Chen S, Gou Y (2013) Synthesis and characterization of a novel precursor-derived ZrC/ZrB2 ultra-hightemperature ceramic composite. Appl Organomet Chem 27:79–84

    Article  Google Scholar 

  15. Yamaok H, Ishikawa T, Kumagawa K (1999) Excellent heat resistance of Si–Zr–C–O Fibre. J Mater Sci 34:1333–1339. https://doi.org/10.1023/A:1004506300754

    Article  Google Scholar 

  16. Chen S, Gou Y, Wang H, Jian K, Wang J (2017) Preparation and characterization of high-temperature resistant ZrC-ZrB2 nanocomposite ceramics derived from single-source precursor. Mater Design 117:257–264

    Article  Google Scholar 

  17. Chen S, Gou Y, Wang H, Wang J (2016) Fabrication and characterization of precursor-derived non-oxide ZrC–SiC multiphase ultrahigh temperature ceramics. J Eur Ceram Soc 36:3843–3850

    Article  Google Scholar 

  18. Itatani K, Hattori K, Harima D (2001) Mechanical and thermal properties of siliconcarbide composites fabricated with short Tyranno® Si–Zr–CO fibre. J Mater Sci 36:3679–3686. https://doi.org/10.1023/A:1017909430037

    Article  Google Scholar 

  19. Cai T, Qiu W, Liu D, Han W, Ye L, Zhao A, Zhao T (2013) Synthesis of soluble poly-yne polymers containing zirconium and silicon and corresponding conversion to nanosized ZrC/SiC composite ceramics. Dalton Trans 42:4285–4290

    Article  Google Scholar 

  20. Williams K, Boydston A, Bielawski C (2007) Main-chain organometallic polymers: synthetic strategies, applications, and perspectives. Chem Soc Rev 36:729–744

    Article  Google Scholar 

  21. Colombo P, Mera G, Riedel R, Soraru GD (2010) Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J Am Ceram Soc 93:1805–1837

    Google Scholar 

  22. Liu C, Liu L, Yang S, Gao W, Xie Z (2002) A novel method to synthesize polyorganozircosilazane. Chin Chem Let 13:1225–1226

    Google Scholar 

  23. Pomogailo AD, Dzhardimalieva GI, Rozenberg AS, Kestelman VN (2007) Hafnium containing Nanocomposites. J Therm Com Mat 20:151–174

    Article  Google Scholar 

  24. Pope EJA, Hepp J, Kratsch KM (2007) Method for forming Hafnium carbide and Hafnium nitride ceramics and preceramic polymers. US 2007/0178038 A1

  25. Ashiri R (2013) Detailed FT-IR spectroscopy characterization and thermal analysis of synthesis of barium titanate nanoscale particles through a newly developed process. Vib Spectrosc 66:24–29

    Article  Google Scholar 

  26. Yao SH, Su YL, Kao WH, Cheng KW (2005) Wear behavior of DC unbalanced magnetron sputter deposited ZrCN films. Mater Lett 59:3230–3233

    Article  Google Scholar 

  27. Braic M, Braic V, Balaceanu M, Zoita CN, Kiss A, Vladescu A, Popescu A, Ripeanu R (2011) Structure and properties of Zr/ZrCN coatings deposited by cathodic arc method. Mater Chem Phys 126:818–825

    Article  Google Scholar 

  28. Mathur S, Altmayer J, Shen H (2004) Nanostructured ZrO2 and Zr–C–N Coatings from Chemical Vapor Deposition of Metal-Organic Precursors. Z Anorg Allg Chem 630:2042–2048

    Article  Google Scholar 

  29. Ionescu E, Kleebe HJ, Riedel R (2012) Silicon-containing polymer-derived ceramic nanocomposites (PDC-NCs): preparative approaches and properties. Chem Soc Rev 41:5032–5052

    Article  Google Scholar 

  30. Yive NSCK, Corriu RJP, Leclereq D, Mutin PH, Vioux A (1992) Thermogravimetric analysis/mass spectrometry investigation of the thermal conversion of organosilicon precursors into ceramics under argon and ammonia. 2. Poly (silazanes). Chem Mater 4:1263–1271

    Article  Google Scholar 

  31. Modabberasl A, Kameli P, Ranjbar M, Salamati H, Ashiri R (2015) Fabrication of DLC thin films with improved diamond-like carbon character by the application of external magnetic field. Carbon 94:485–493

    Article  Google Scholar 

  32. Ionescu E, Papendorf B, Kleebe HJ (2012) Phase separation of a hafnium alkoxide-modified polysilazane upon polymer-to-ceramic transformation—A case study. J Eur Ceram Soc 32:1873–1881

    Article  Google Scholar 

  33. Ashiri R (2012) Analysis and characterization of phase evolution of nanosized BaTiO3 powder synthesized through a chemically modified sol–gel process. Metall Mater Trans A 43:4414–4426

    Article  Google Scholar 

  34. Yan C, Liu R, Cao Y, Zhang C, Zhang D (2012) Carbothermal synthesis of submicrometer zirconium carbide from polyzirconoxane and phenolic resin by the facile one-pot reaction. J Am Ceram Soc 95:3366–3369

    Article  Google Scholar 

  35. Pizon D, Charpentier L, Lucas R (2014) Oxidation behavior of spark plasma sintered ZrC–SiC composites obtained from the polymer-derived ceramics route. Cer Int 40:5025–5031

    Article  Google Scholar 

  36. Krutko D, Borzov M, Lemenovskii D, Dzhardimalieva G, Pomogailob A (2005) Synthesis and reactivity of metal-containing monomers. Part 59: preparation and polymerization transformations of vinyl and isopropenyl derivatives of hafnocene dichloride. Russ Chem Bull Int Ed 54:247–251

    Article  Google Scholar 

  37. Yuan J, Hapis S, Breitzke H, Xu Y, Fasel C, Kleebe HJ, Buntkowsky G, Riedel R, Ionescu E (2014) Single-source-precursor synthesis of hafnium-containing ultrahigh temperature ceramic nanocomposites (UHTC-NCs). Inorg Chem 53:10443–10455

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Natural Science Foundation of China (Grant No. 51302313), Aid program for Innovative Group of National University of Defense Technology, and the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanzi Gou or Hao Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Gou, Y., Chen, S. et al. Synthesis and characterization of soluble and meltable Zr-containing polymers as the single-source precursor for Zr(C, N) multinary ceramics. J Mater Sci 53, 10933–10945 (2018). https://doi.org/10.1007/s10853-018-2382-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2382-5

Keywords

Navigation