Skip to main content
Log in

Polymer/carbon nanotubes nanocomposites: relationship between interfacial adhesion and performance of nanocomposites

  • Composites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Understanding the relationship between interfacial adhesion and performance of nanocomposites is crucial for further designing and preparation of polymer/carbon nanotubes (CNTs) nanocomposites. In this work, we designed three auxiliary comonomers (ACMs) to construct different interfacial interaction between CNTs and polymer matrix. Raw CNTs were first oxidized by blended acids, and then three ACMs were introduced to copolymerize with methyl methacrylate (MMA) to prepare polymethyl methacrylate (PMMA)/CNTs nanocomposites via in situ polymerization. The relationship between interfacial adhesion and performance of nanocomposites was investigated in detail. The results indicated that, the enhanced interfacial adhesion led to improved thermal stability, tensile strength and modulus of nanocomposites, while the elongation at break displayed a totally opposite variation with increased interfacial adhesion. When interfacial adhesion is overwhelmingly strong, the elongation at break of nanocomposites may be even lower than that of polymer matrix. In a word, this study provides a significant reference value on constructing different interfacial interaction for obtaining polymer/CNTs nanocomposites with desired properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Goswami M, Sumpter BG (2009) Effect of polymer–filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. J Chem Phys 130:134910

    Article  Google Scholar 

  2. Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25

    Article  Google Scholar 

  3. Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35:837–867

    Article  Google Scholar 

  4. Cui L, Tarte NH, Woo SI (2011) Synthesis and properties of poly(methyl methacrylate)/carbon nanotube composites covalently integrated through in situ radical polymerization. J Appl Polym Sci 119:452–459

    Article  Google Scholar 

  5. Arjmand M, Ameli A, Sundararaj U (2016) Employing nitrogen doping as innovative technique to improve broadband dielectric properties of carbon nanotube/polymer nanocomposites. Macromol Mater Eng 301:555–565

    Article  Google Scholar 

  6. Garzon C, Wilhelm M, Abbasi M, Palza H (2016) Effect of carbon-based particles on the mechanical behavior of isotactic poly(propylene)s. Macromol Mater Eng 301:429–440

    Article  Google Scholar 

  7. Szatkowski P, Pielichowska K, Blazewicz S (2017) Mechanical and thermal properties of carbon-nanotube-reinforced self-healing polyurethanes. J Mater Sci 52:12221–12234. https://doi.org/10.1007/s10853-017-1353-6

    Article  Google Scholar 

  8. Rahmat M, Hubert P (2011) Carbon nanotube–polymer interactions in nanocomposites: a review. Compos Sci Technol 72:72–84

    Article  Google Scholar 

  9. Young RJ, Deng L, Wafy TZ, Kinloch IA (2015) Interfacial and internal stress transfer in carbon nanotube based nanocomposites. J Mater Sci 51:344–352. https://doi.org/10.1007/s10853-015-9347-8

    Article  Google Scholar 

  10. Loos MR, Yang J, Feke DL, Manas-Zloczower I (2012) Effect of block-copolymer dispersants on properties of carbon nanotube/epoxy systems. Compos Sci Technol 72:482–488

    Article  Google Scholar 

  11. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A 41:1345–1367

    Article  Google Scholar 

  12. Cha J, Jin S, Shim JH, Park CS, Ryu HJ, Hong SH (2016) Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater Des 95:1–8

    Article  Google Scholar 

  13. Khan MU, Reddy KR, Snguanwongchai T, Haque E, Gomes VG (2016) Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization. Colloid Polym Sci 294:1599–1610

    Article  Google Scholar 

  14. Kim SW, Kim T, Kim YS, Choi HS, Lim HJ, Yang SJ et al (2015) Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers. Carbon 50:3–33

    Article  Google Scholar 

  15. Prado LASdA, Kopyniecka A, Chandrasekaran S, Broza G, Roslaniec Z, Schulte K (2013) Impact of filler functionalisation on the crystallinity, thermal stability and mechanical properties of thermoplastic elastomer/carbon nanotube nanocomposites. Macromol Mater Eng 298:359–370

    Article  Google Scholar 

  16. Bai L, Bai Y, Zheng J (2017) Improving the filler dispersion and performance of silicone rubber/multi-walled carbon nanotube composites by noncovalent functionalization of polymethylphenylsiloxane. J Mater Sci 52:7516–7529. https://doi.org/10.1007/s10853-017-0984-y

    Article  Google Scholar 

  17. Wang Z, Yang X, Wei J, Xu M, Tong L, Zhao R et al (2012) Morphological, electrical, thermal and mechanical properties of phthalocyanine/multi-wall carbon nanotubes nanocomposites prepared by masterbatch dilution. J Polym Res 19:1–8

    Article  Google Scholar 

  18. Mallakpour S, Zadehnazari A (2013) Effect of amino acid-functionalization on the interfacial adhesion and behavior of multi-walled carbon nanotubes/poly(amide-imide) nanocomposites containing thiazole side unit. J Polym Res 20:1–12

    Google Scholar 

  19. Kwon J-Y, Kim H-D (2005) Preparation and properties of acid-treated multiwalled carbon nanotube/waterborne polyurethane nanocomposites. J Appl Polym Sci 96:595–604

    Article  Google Scholar 

  20. Jiang Y, Wang X, Yu Z et al (2016) One-step preparation of non-covalent functionalized carboxylic multi-walled carbon nanotubes/polymethyl methacrylate nanocomposites via in situ polymerization. Adv Polym Tech. https://doi.org/10.1002/adv.21749

    Google Scholar 

  21. Zhang B, Chakoli AN, Zang W, Tian Y, Zhang K, Chen C et al (2014) A comparative study on effect of aromatic polyimide chain conformation on reinforcement of carbon nanotube/polyimide nanocomposites. J Appl Polym Sci 131:178–184

    Google Scholar 

  22. Zhang H, Xu L, Yang F, Geng L (2010) The synthesis of polyacrylonitrile/carbon nanotube microspheres by aqueous deposition polymerization under ultrasonication. Carbon 48:688–695

    Article  Google Scholar 

  23. Xu Z, Niu Y, Wang Z, Li H, Yang L, Qiu J et al (2011) Enhanced nucleation rate of polylactide in composites assisted by surface acid oxidized carbon nanotubes of different aspect ratios. ACS Appl Mater Inter 3:3744–3753

    Article  Google Scholar 

  24. Puglia D, Valentini L, Kenny JM (2010) Analysis of the cure reaction of carbon nanotubes/epoxy resin composites through thermal analysis and Raman spectroscopy. J Appl Polym Sci 88:452–458

    Article  Google Scholar 

  25. Logakis E, Pollatos E, Pandis C, Peoglos V, Zuburtikudis I, Delides CG et al (2010) Structure–property relationships in isotactic polypropylene/multi-walled carbon nanotubes nanocomposites. Compos Sci Technol 70:328–335

    Article  Google Scholar 

  26. Chen Y, Mastalerz M, Schimmelmann A (2010) Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy. Int J Coal Geol 104:22–33

    Article  Google Scholar 

  27. Katihabwa A, Wencai W, Yi J, Xiuying Z, Yonglai L, Liqun Z (2011) Multi-walled carbon nanotubes/silicone rubber nanocomposites prepared by high shear mechanical mixing. J Reinf Plast Comp 30:1007–1014

    Article  Google Scholar 

  28. Kiziltas EE, Yang HS, Kiziltas A et al (2016) Thermal analysis of polyamide 6 composites filled by natural fiber blend. BioResources 11:4758–4769

    Google Scholar 

  29. Liew KM, Lei ZX, Zhang LW (2015) Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos Struct 120:90–97

    Article  Google Scholar 

  30. Li Z, Tang M, Dai J, Wang T, Bai R (2016) Effect of multiwalled carbon nanotube-grafted polymer brushes on the mechanical and swelling properties of polyacrylamide composite hydrogels. Polymer 85:67–76

    Article  Google Scholar 

  31. Zare Y (2017) Evaluation of nanoparticle dispersion and its influence on the tensile modulus of polymer nanocomposites by a modeling method. Colloid Polym Sci 295:363–369

    Article  Google Scholar 

  32. Nikfar N, Esfandiar M, Shahnazari MR, Mojtahedi N, Zare Y (2017) The reinforcing and characteristics of interphase as the polymer chains adsorbed on the nanoparticles in polymer nanocomposites. Colloid Polym Sci 295:2001–2010

    Article  Google Scholar 

  33. Wang X, Wang L, Su Q, Zheng J (2013) Use of unmodified SiO2 as nanofiller to improve mechanical properties of polymer-based nanocomposites. Compos Sci Technol 89:52–60

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51473114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junping Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Jiang, Y., Ding, Y. et al. Polymer/carbon nanotubes nanocomposites: relationship between interfacial adhesion and performance of nanocomposites. J Mater Sci 53, 10160–10172 (2018). https://doi.org/10.1007/s10853-018-2335-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2335-z

Keywords

Navigation