Journal of Materials Science

, Volume 53, Issue 14, pp 10523–10533 | Cite as

A highly selective and sensitive colorimetric Hg2+ sensor based on hemicyanine-functionalized polyacrylonitrile fiber

  • Yali Zhao
  • Xiaoli Xing
  • Runjiao Gao
  • Minli Tao
  • Wenqin Zhang


In this work, we have synthesized a novel hemicyanine-modified polyacrylonitrile fiber (HDBA-PANAF) as a colorimetric Hg2+ sensor. The color is observed from dark red to orange by the naked eye only when the fiber is exposed to Hg2+. Positively, the HDBA-PANAF shows high selectivity and sensitivity for Hg2+ compared with other metal ions such as Na+, Mg2+, Al3+, Ca2+, Cr3+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Ag+, Cd2+ and Pb2+. Furthermore, the obtained fiber has a wide pH application range from 3 to 11 and also processes a lower detection limit of 1 × 10−6 mol L−1 for Hg2+. Moreover, the HDBA-PANAF undergoes an obvious color change toward Hg2+ even containing an excess of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) in the solution, indicating that the fiber has a stronger complexation affinity for Hg2+ than EDTA-2Na. Hence, the fiber sensor possesses the merits of low cost, high selectivity, low detection limit and environment-friendly property, which shows that it is a promising candidate for Hg2+ detection in water.



The authors are thankful for the financial support from National Natural Science Foundation of China (Nos.: 21777111 and 21572156).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2018_2304_MOESM1_ESM.doc (7.9 mb)
Supplementary material 1 (DOC 8100 kb)


  1. 1.
    Rani BK, John SA (2018) Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit. J Hazard Mater 343:98–106CrossRefGoogle Scholar
  2. 2.
    Tolessa T, Tan ZQ, Yin YG, Liu JF (2018) Single-drop gold nanoparticles for headspace microextraction and colorimetric assay of mercury (II) in environmental waters. Talanta 176:77–84CrossRefGoogle Scholar
  3. 3.
    Li P, Zhang D, Jiang C, Zong X, Cao Y (2017) Ultra-sensitive suspended atomically thin-layered black phosphorus mercury sensors. Biosens Bioelectron 98:68–75CrossRefGoogle Scholar
  4. 4.
    Lin H, Chen C (2016) Thermo-responsive electrospun nanofibers doped with 1,10-phenanthroline-based fluorescent sensor for metal ion detection. J Mater Sci 51:1620–1631. CrossRefGoogle Scholar
  5. 5.
    Shi D, Ni M, Zeng J, Ye J, Ni P, Liu X, Chen M (2015) Simultaneous detection and removal of metal ions based on a chemosensor composed of a rhodamine derivative and cyclodextrin-modified magnetic nanoparticles. J Mater Sci 50:168–175. CrossRefGoogle Scholar
  6. 6.
    Sakly N, Marzouk W, Ouada HB, Majdoub H (2017) Enhancing performances of colorimetric response of carboxymethylcellulose-stabilized silver nanoparticles: a fully eco-friendly assay for Hg2+ detection. Sens Actuators B Chem 253:918–927CrossRefGoogle Scholar
  7. 7.
    Ko S-K, Yang Y-K, Tae J, Shin I (2006) In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J Am Chem Soc 128:14150–14155CrossRefGoogle Scholar
  8. 8.
    Zhu M, Yuan M, Liu X, Xu J, Lv J, Huang C, Liu H, Li Y, Wang S, Zhu D (2008) Visible near-infrared chemosensor for mercury ion. Org Lett 10:1481–1484CrossRefGoogle Scholar
  9. 9.
    Ando S, Koide K (2011) Development and applications of fluorogenic probes for mercury(II) based on vinyl ether oxymercuration. J Am Chem Soc 133:2556–2566CrossRefGoogle Scholar
  10. 10.
    Yang H, Zhou Z, Li F, Yi T, Huang C (2007) New Hg2+ and Ag+ selective colorimetric sensor based on thiourea subunits. Inorg Chem Commun 10:1136–1139CrossRefGoogle Scholar
  11. 11.
    Yuan M, Li Y, Li J, Li C, Liu X, Lv J, Xu J, Liu H, Wang S, Zhu D (2007) A colorimetric and fluorometric dual-model assay for mercury ion by a molecule. Org Lett 9:2313–2316CrossRefGoogle Scholar
  12. 12.
    Tatay S, Gavina P, Coronado E, Palomares E (2006) Optical mercury sensing using a benzothiazolium hemicyanine dye. Org Lett 8:3857–3860CrossRefGoogle Scholar
  13. 13.
    Wang X, Pei Y, Lu M, Lu X, Du X (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50:2113–2121. CrossRefGoogle Scholar
  14. 14.
    Tan ZQ, Qiu JR, Zeng HC, Liu H, Xiang J (2011) Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90:1471–1475CrossRefGoogle Scholar
  15. 15.
    Alvarez-Ayuso E, Garcia-Sanchez A (2007) Removal of cadmium from aqueous solutions by palygorskite. J Hazard Mater 147:594–600CrossRefGoogle Scholar
  16. 16.
    Celis R, HermosIn MC, Cornejo J (2000) Heavy metal adsorption by functionalized clays. Environ Sci Technol 34:4593–4599CrossRefGoogle Scholar
  17. 17.
    Sahin ZM, Alimli D, Tonta MM, Kose ME, Yilmaz F (2017) Highly sensitive and reusable mercury (II) sensor based on fluorescence quenching of pyrene moiety in polyacrylamide-based cryogel. Sens Actuators B 242:362–368CrossRefGoogle Scholar
  18. 18.
    Bernard J, Branger C, Nguyen TLA, Denoyel R, Margaillan A (2008) Synthesis and characterization of a polystyrenic resin functionalized by catechol: application to retention of metal ions. React Funct Polym 68:1362–1370CrossRefGoogle Scholar
  19. 19.
    Goswami A, Singh AK (2004) Hyperbranched polyester having nitrogen core: synthesis and applications as metal ion extractant. React Funct Polym 61:255–263CrossRefGoogle Scholar
  20. 20.
    Dhakal RP, Inoue K, Yoshizuka K, Ohto K, Yamada M, Seki S (2005) Solvent extraction of some metal ions with lipophilic chitin and chitosan. Solvent Extr Ion Exch 23:529–543CrossRefGoogle Scholar
  21. 21.
    Sha J, Song Y, Liu B, Lü C (2015) Hosteguest-recognition-based polymer brush-functionalized mesoporous silica nanoparticles loaded with conjugated polymers: a facile FRET-based ratiometric probe for Hg2+. Microporous Mesoporous Mater 218:137–143CrossRefGoogle Scholar
  22. 22.
    Liu S, Kang M, Yan F, Peng D, Yang Y, He L, Wang M, Fang S, Zhang Z (2015) Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg(II) detection. Electrochim Acta 160:64–73CrossRefGoogle Scholar
  23. 23.
    Simitzis JC, Georgiou PC (2015) Functional group changes of polyacrylonitrile fibres during their oxidative, carbonization and electrochemical treatment. J Mater Sci 50:4547–4564. CrossRefGoogle Scholar
  24. 24.
    Kunzmann C, Moosburger-Will J, Horn S (2016) High-resolution imaging of the nanostructured surface of polyacrylonitrile-based fibers. J Mater Sci 51:9638–9648. CrossRefGoogle Scholar
  25. 25.
    Lee SH, Jeong YG, Yoon YI, Park WH (2017) Hydrolysis of oxidized polyacrylonitrile nanofibrous webs and selective adsorption of harmful heavy metal ions. Polym Degrad Stab 143:207–213CrossRefGoogle Scholar
  26. 26.
    Li X, Wu D, Luo Q, An J, Yin R, Wang D (2016) Advanced cyclized polyacrylonitrile (CPAN)/CdS nanocomposites for highly efficient visible-light photocatalysis. J Mater Sci 52:1–13. CrossRefGoogle Scholar
  27. 27.
    Cao J, Xu G, Xie Y, Tao M, Zhang W (2016) Thiourea modified polyacrylnitrile fibers as efficient Pd(II) scavengers. RSC Adv 6:58088–58098CrossRefGoogle Scholar
  28. 28.
    Xu G, Zhao Y, Hou L, Cao J, Tao M, Zhang W (2017) A recyclable phosphinic acid functionalized polyacrylonitrile fiber for selective and efficient removal of Hg2+. Chem Eng J 325:533–543CrossRefGoogle Scholar
  29. 29.
    Xu G, Wang L, Xie Y, Tao M, Zhang W (2018) Highly selective and efficient adsorption of Hg2+ by a recyclable aminophosphonic acid functionalized polyacrylonitrile fiber. J Hazard Mater 344:679–688CrossRefGoogle Scholar
  30. 30.
    Deng S, Zhang G, Liang S, Wang P (2017) Microwave assisted preparation of thio-functionalized polyacrylonitrile fiber for the selective and enhanced adsorption of mercury and cadmium from water. ACS Sustain Chem Eng 5:6054–6063CrossRefGoogle Scholar
  31. 31.
    Zhao R, Li X, Sun B, Li Y, Li Y, Yang R, Wang C (2017) Branched polyethylenimine grafted electrospun polyacrylonitrile fiber membrane: a novel and effective adsorbent for Cr(VI) remediation in wastewater. J Mater Chem A 5:1133–1144CrossRefGoogle Scholar
  32. 32.
    Wang G, Wang J, Zhang H, Ting F, Wu T, Ren Q, Qiu J (2017) Functional PAN-based monoliths with hierarchical structure for heavy metal removal. Chem Eng J 313:1607–1614CrossRefGoogle Scholar
  33. 33.
    Du J, Xu G, Lin H, Wang G, Tao M, Zhang W (2016) Highly efficient reduction of carbonyls, azides, and benzyl halides by NaBH4 in water catalyzed by PANF-immobilized quaternary ammonium salts. Green Chem 18:2726–2735CrossRefGoogle Scholar
  34. 34.
    Xu G, Cao J, Zhao Y, Zheng L, Tao M, Zhang W (2017) Phosphorylated polyacrylonitrile fibers as an efficient and greener acetalization catalyst. Chem Asian J 12:2565–2575CrossRefGoogle Scholar
  35. 35.
    Li P, Liu Y, Cao J, Tao M, Zhang W (2017) Tuning the catalytic activity of tertiary-amine functionalized polyacrylonitrile fiber by adjusting the surface micro-environment. ChemCatChem 9:3725–3732CrossRefGoogle Scholar
  36. 36.
    Li G, Zhang L, Li Z, Zhang W (2010) PAR immobilized colorimetric fiber for heavy metal ion detection and adsorption. J Hazard Mater 177:983–989CrossRefGoogle Scholar
  37. 37.
    Gao R, Xu G, Zheng L, Xie Y, Tao M, Zhang W (2016) A highly selective and sensitive reusable colorimetric sensor for Ag+ based on thiadiazole functionalized polyacrylonitrile fiber. J Mater Chem C 4:5996–6006CrossRefGoogle Scholar
  38. 38.
    Xing X, Yang H, Tao M, Zhang W (2015) An overwhelmingly selective colorimetric sensor for Ag+ using a simple modified polyacrylonitrile fiber. J Hazard Mater 297:207–216CrossRefGoogle Scholar
  39. 39.
    Jing T, Fu L, Liu L, Yan L (2016) A reduction-responsive polypeptide nanogel encapsulating NIR photosensitizer for imaging guided photodynamic therapy. Polym Chem 7:951–957CrossRefGoogle Scholar
  40. 40.
    Hu Y, Yin J, Yoon J (2016) A multi-responsive cyanine-based colorimetric chemosensor containing dipicolylamine moieties for the detection of Zn(II) and Cu(II) ions. Sens Actuators B 230:40–45CrossRefGoogle Scholar
  41. 41.
    Laramie MD, Levitz A, Henary M (2017) Cyanine and squaric acid metal sensors. Sens Actuators B 243:191–1204CrossRefGoogle Scholar
  42. 42.
    Sun W, Guo S, Hu C, Fan J, Peng X (2016) Recent development of chemosensors based on cyanine platforms. Chem Rev 116:7768–7817CrossRefGoogle Scholar
  43. 43.
    Li Y, Wei F, Lu Y, He S, Zhao L, Zeng X (2013) Novel mercury sensor based on water soluble styrylindolium dye. Dyes Pigment 96:424–429CrossRefGoogle Scholar
  44. 44.
    Chen H, Zhang X, Sun H, Sun X, Shi Y, Xu S, Tang Y (2015) Visual detection of mercury(II) based on recognition of the G-quadruplex conformational transition by a cyanine dye supramolecule. Analyst 140:7170–7174CrossRefGoogle Scholar
  45. 45.
    Zhang L, Zhang X, Li P, Zhang W (2009) Effective Cd2+ chelating fiber based on polyacrylonitrile. React Funct Polym 69:48–54CrossRefGoogle Scholar
  46. 46.
    Schäfer H, Arnebold A, Stelten J, Marquet J, María Sebastián R, Hartwig A, Koschek K (2016) Bifunctional benzoxazines: synthesis and polymerization of resorcinol based single isomers. J Polym Sci Part A Polym Chem 54:1243–1251CrossRefGoogle Scholar
  47. 47.
    Badawy SM, Dessouki AM (2003) Cross-linked polyacrylonitrile prepared by radiation-induced polymerization technique. J Phys Chem B 107:11273–11279CrossRefGoogle Scholar
  48. 48.
    Deng S, Bai R, Chen JP (2003) Aminated polyacrylonitrile fibers for lead and copper removal. Langmuir 19:5058–5064CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yali Zhao
    • 1
  • Xiaoli Xing
    • 1
  • Runjiao Gao
    • 1
  • Minli Tao
    • 1
    • 2
  • Wenqin Zhang
    • 1
    • 2
  1. 1.Department of Chemistry, School of ScienceTianjin UniversityTianjinChina
  2. 2.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinChina

Personalised recommendations