Advertisement

Journal of Materials Science

, Volume 53, Issue 19, pp 13751–13757 | Cite as

Effect of ball milling on the first hydrogenation of TiFe alloy doped with 4 wt% (Zr + 2Mn) additive

  • Gabriela Romero
  • Peng Lv
  • Jacques Huot
Mechanochemical Synthesis

Abstract

In this paper, we report the microstructure and hydrogen storage properties of TiFe + 4 wt% (Zr + 2Mn) alloy before and after high-energy milling. The as-cast sample was made of a main TiFe phase with a Zr- and Mn-rich secondary phase. We found that ball milling can significantly reduce the crystallite size of TiFe + 4 wt% (Zr + 2Mn) alloy. First hydrogenation measurements showed that the sample milled for 15 min displayed a faster hydrogenation than the as-cast sample but with a slight loss of capacity. Further milling made the samples totally inert to hydrogen. It may be concluded that the as-cast alloy has a special microstructure that is possibly destroyed by milling.

Notes

Acknowledgements

We are thankful to Fonds de recherche du Quebec-Nature et technologies (FRQNT) for a Ph.D. fellowship (P. L.) and MITACS for an internship fellowship (G. R.). We would also thank Mrs. A. Lejeune for SEM analysis.

References

  1. 1.
    Ali W, Hao Z, Li Z, Chen G, Wu Z, Lu X et al (2017) Effects of Cu and Y substitution on hydrogen storage performance of TiFe0.86Mn0.1Y0.1 − xCux. Int J Hydrog Energy 42:16620–16631CrossRefGoogle Scholar
  2. 2.
    Endo N, Saita I, Nakamura Y, Saitoh H, Machida A (2015) Hydrogenation of a TiFe-based alloy at high pressures and temperatures. Int J Hydrog Energy 40:3283–3287CrossRefGoogle Scholar
  3. 3.
    Leng H, Yu Z, Yin J, Li Q, Wu Z, Chou K-C (2017) Effects of Ce on the hydrogen storage properties of TiFe0.9Mn0.1 alloy. Int J Hydrog Energy 42:23731–23736CrossRefGoogle Scholar
  4. 4.
    Zadorozhnyy VY, Milovzorov GS, Klyamkin SN, Zadorozhnyy MY, Strugova DV, Gorshenkov MV et al (2017) Preparation and hydrogen storage properties of nanocrystalline TiFe synthesized by mechanical alloying. Prog Nat Sci Mater Int 27:149–155CrossRefGoogle Scholar
  5. 5.
    Schober T, Westlake D (1981) The activation of FeTi for hydrogen storage: a different view. Scr Metall 15:913–918CrossRefGoogle Scholar
  6. 6.
    Khatamian D, Weatherly G, Manchester F (1983) Some effects of activation for hydrogen absorption in FeTi powder. Acta Metall 31:1771–1780CrossRefGoogle Scholar
  7. 7.
    Reilly J, Wiswall R Jr (1974) Formation and properties of iron titanium hydride. Inorg Chem 13:218–222CrossRefGoogle Scholar
  8. 8.
    Gosselin C, Huot J (2015) Hydrogenation properties of TiFe doped with zirconium. Materials 8:7864–7872CrossRefGoogle Scholar
  9. 9.
    Jain P, Gosselin C, Huot J (2015) Effect of Zr, Ni and Zr 7 Ni 10 alloy on hydrogen storage characteristics of TiFe alloy. Int J Hydrog Energy 40:16921–16927CrossRefGoogle Scholar
  10. 10.
    Lv P, Huot J (2016) Hydrogen storage properties of Ti 0.95 FeZr 0.05, TiFe 0.95 Zr 0.05 and TiFeZr 0.05 alloys. Int J Hydrog Energy 41:22128–22133CrossRefGoogle Scholar
  11. 11.
    Lee S-M, Perng T-P (1994) Effect of the second phase on the initiation of hydrogenation of TiFe1 − xMx (M=Cr, Mn) alloys. Int J Hydrog Energy 19:259–263CrossRefGoogle Scholar
  12. 12.
    Lv P, Huot J (2017) Hydrogenation improvement of TiFe by adding ZrMn2. Energy 138:375–382CrossRefGoogle Scholar
  13. 13.
    Miller H, Murray J, Laury E, Reinhardt J, Goudy A (1995) The hydriding and dehydriding kinetics of FeTi and Fe0. 9TiMn0.1. J Alloy Compd 231:670–674CrossRefGoogle Scholar
  14. 14.
    Nishimiya N, Wada T, Matsumoto A, Tsutsumi K (2000) Hydriding characteristics of zirconium-substituted FeTi. J Alloy Compd 313:53–58CrossRefGoogle Scholar
  15. 15.
    Abe M, Kuji T (2007) Hydrogen absorption of TiFe alloy synthesized by ball milling and post-annealing. J Alloy Compd 446–447:200–203CrossRefGoogle Scholar
  16. 16.
    Zadorozhnyy V, Klyamkin S, Zadorozhnyy M, Bermesheva O, Kaloshkin S (2012) Hydrogen storage nanocrystalline TiFe intermetallic compound: synthesis by mechanical alloying and compacting. Int J Hydrog Energy 37:17131–17136CrossRefGoogle Scholar
  17. 17.
    Zadorozhnyy VY, Klyamkin SN, Zadorozhnyy MY, Gorshenkov MV, Kaloshkin SD (2014) Mechanical alloying of nanocrystalline intermetallic compound TiFe doped with sulfur and magnesium. J Alloy Compd 615:S569–S572CrossRefGoogle Scholar
  18. 18.
    Zadorozhnyy VY, Klyamkin SN, Zadorozhnyy MY, Bermesheva OV, Kaloshkin SD (2014) Mechanical alloying of nanocrystalline intermetallic compound TiFe doped by aluminum and chromium. J Alloy Compd 586:S56–S60CrossRefGoogle Scholar
  19. 19.
    Emami H, Edalati K, Matsuda J, Akiba E, Horita Z (2015) Hydrogen storage performance of TiFe after processing by ball milling. Acta Mater 88:190–195CrossRefGoogle Scholar
  20. 20.
    Coelho AA (2004) A Computer programme for Rietveld analysis. Topas-Academic, BrisbaneGoogle Scholar
  21. 21.
    Bruker A (2005) TOPAS V3: general profile and structure analysis software for powder diffraction data. User’s Manual. Bruker AXS, KarlsruheGoogle Scholar
  22. 22.
    Patel AK, Sharma P, Huot J (2018) Effect of annealing on microstructure and hydrogenation properties of TiFe + X wt% Zr (X = 4, 8). Int J Hydrog Energy 43:6238–6243CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chemistry and NanotechnologyInstitutoTecnológicoy de EstudiosSuperiores de Monterrey (ITESM)MonterreyMexico
  2. 2.Hydrogen Research InstituteUniversité du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations