Journal of Materials Science

, Volume 53, Issue 14, pp 10313–10326 | Cite as

Tailoring graphitic nanostructures in hard carbons as anode materials achieving efficient and ultrafast sodium storage

  • Yuxiang Chen
  • Jie Li
  • Yanqing Lai
  • Junming Li
  • Zhian Zhang
Energy materials


Hard carbons appear to be promising anode candidates in high-performance sodium-ion batteries (SIBs) for large-scale stationary energy storage due to their large interlayer distance and amorphous structure, which facilitate sodium ions insertion/desertion. However, several major hurdles to address are poor rate performances and the low initial coulombic efficiency (ICE). Herein, a facile strategy to tailor hard carbons with graphitic nanostructures and rational specific surface area is proposed to improve sodium storage. Resin-derived carbon nanobroccolis (CNB) with in situ decorated graphitic nanostructures have been successfully synthesized by self-assembly and low-temperature catalytic carbonization process. As a result, attribute to in situ tailored graphitic nanostructures in hard carbons and rational specific surface area, CNB electrodes possess less charge transfer resistance and excellent sodium ions diffusion kinetics and successfully achieve fast and efficient sodium storage. When used as anode for sodium-ion batteries, CNB electrodes exhibit excellent high-rate capability of 137 mAh g−1 at 1000 mA g−1 and enhanced ICE of 52.6%. Our strategy reported here opens a door to design high-performance carbon anode materials for SIBs particularly focusing on efficient sodium ions storage and fast sodium ions diffusion.



The authors thank the financial support of the National Natural Science Foundation of China (Grant No. 51674297) and the Natural Science Foundation of Hunan Province (Grant No. 2016JJ2137). The authors thank the financial support of the Basic Research Program of Shenzhen, China (Grant No. JCYJ20170307140332076).

Compliance with ethical standards

Conflicts of interest

The authors declare no competing financial interest.

Supplementary material

10853_2018_2295_MOESM1_ESM.doc (1.5 mb)
Supplementary material 1 (DOC 1574 kb)


  1. 1.
    Wen Y, He K, Zhu Y, Han F, Xu Y, Matsuda I, Ishii Y, Cumings J, Wang C (2014) Expanded graphite as superior anode for sodium-ion batteries. Nat Commun 5:4033–4040Google Scholar
  2. 2.
    Wang S, Xia L, Yu L, Zhang L, Wang H, Lou XWD (2016) Free-standing nitrogen-doped carbon nanofiber films: integrated electrodes for sodium-ion batteries with ultralong cycle life and superior rate capability. Adv Energy Mater 6:1502217CrossRefGoogle Scholar
  3. 3.
    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787CrossRefGoogle Scholar
  4. 4.
    Yang F, Zhang Z, Du K, Zhao X, Chen W, Lai Y, Li J (2015) Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries. Carbon 91:88–95CrossRefGoogle Scholar
  5. 5.
    Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94:189–195CrossRefGoogle Scholar
  6. 6.
    Gaddam RR, Yang D, Narayan R, Raju K, Kumar NA, Zhao XS (2016) Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries. Nano Energy 26:346–352CrossRefGoogle Scholar
  7. 7.
    Kim H, Hong J, Park YU, Kim J, Hwang I, Kang K (2015) Sodium storage behavior in natural graphite using ether-based electrolyte systems. Adv Funct Mater 25:534–541CrossRefGoogle Scholar
  8. 8.
    Zhang SW, Lv W, Luo C, You CH, Zhang J, Pan ZZ, Kang FY, Yang QH (2016) Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries. Energy Storage Mater 3:18–23CrossRefGoogle Scholar
  9. 9.
    Li D, Zhang L, Chen H, Ding LX, Wang S, Wang H (2015) Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chem Commun 51:16045–16048CrossRefGoogle Scholar
  10. 10.
    Tang K, Fu L, White RJ, Yu L, Titirici M-M, Antonietti M, Maier J (2012) Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv Energy Mater 2:873–877CrossRefGoogle Scholar
  11. 11.
    Väli R, Jänes A, Thomberg T, Lust E (2016) d-Glucose derived nanospheric hard carbon electrodes for room-temperature sodium-ion batteries. J Electrochem Soc 163:A1619–A1626CrossRefGoogle Scholar
  12. 12.
    Li Y, Xu S, Wu X, Yu J, Wang Y, Hu YS, Li H, Chen L, Huang X (2015) Amorphous monodispersed hard carbon micro-spherules derived from biomass as a high performance negative electrode material for sodium-ion batteries. J Mater Chem A 3:71–77CrossRefGoogle Scholar
  13. 13.
    Hong KL, Qie L, Zeng R, Yi ZQ, Zhang W, Wang D, Yin W, Wu C, Fan QJ, Zhang WX, Huang YH (2014) Biomass derived hard carbon used as a high performance anode material for sodium ion batteries. J Mater Chem A 2:12733–12738CrossRefGoogle Scholar
  14. 14.
    Li Y, Hu YS, Qi X, Rong X, Li H, Huang X, Chen L (2016) Advanced sodium-ion batteries using superior low cost pyrolyzed anthracite anode: towards practical applications. Energy Storage Mater 5:191–197CrossRefGoogle Scholar
  15. 15.
    Li Y, Hu YS, Titirici MM, Chen L, Huang X (2016) Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries. Adv Energy Mater 6:1600659CrossRefGoogle Scholar
  16. 16.
    Shen F, Luo W, Dai J, Yao Y, Zhu M, Hitz E, Tang Y, Chen Y, Sprenkle VL, Li X, Hu L (2016) Ultra-thick, low-tortuosity, and mesoporous wood carbon anode for high-performance sodium-ion batteries. Adv Energy Mater 6:1600377CrossRefGoogle Scholar
  17. 17.
    Zheng P, Liu T, Guo S (2016) Micro-nano structure hard carbon as a high performance anode material for sodium-ion batteries. Sci Rep 6:35620CrossRefGoogle Scholar
  18. 18.
    Luo W, Shen F, Bommier C, Zhu H, Ji X, Hu L (2016) Na-ion battery anodes: materials and electrochemistry. Acc Chem Res 49:231–240CrossRefGoogle Scholar
  19. 19.
    Li Y, Paranthaman MP, Akato K, Naskar AK, Levine AM, Lee RJ, Kim SO, Zhang J, Dai S, Manthiram A (2016) Tire-derived carbon composite anodes for sodium-ion batteries. J Power Sources 316:232–238CrossRefGoogle Scholar
  20. 20.
    Liu P, Li Y, Hu YS, Li H, Chen L, Huang X (2016) A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries. J Mater Chem A 4:13046–13052CrossRefGoogle Scholar
  21. 21.
    Kado Y, Soneda Y (2016) MgO-templated carbon as a negative electrode material for Na-ion capacitors. J Phys Chem Solid 99:167–172CrossRefGoogle Scholar
  22. 22.
    Elkhatat AM, Al-Muhtaseb SA (2011) Advances in tailoring resorcinol-formaldehyde organic and carbon gels. Adv Mater 23:2887–2903CrossRefGoogle Scholar
  23. 23.
    Yu ZL, Xin S, You Y, Yu L, Lin Y, Xu DW, Qiao C, Huang ZH, Yang N, Yu SH, Goodenough JB (2016) Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage. J Am Chem Soc 138:14915–14922CrossRefGoogle Scholar
  24. 24.
    Yu ZL, Li GC, Fechler N, Yang N, Ma ZY, Wang X, Antonietti M, Yu SH (2016) Polymerization under hypersaline conditions: a robust route to phenolic polymer-derived carbon aerogels. Angew Chem Int Edit 128:14843–14847CrossRefGoogle Scholar
  25. 25.
    Nelson KM, Mahurin SM, Mayes RT, Williamson B, Teague CM, Binder AJ, Baggetto L, Veith GM, Dai S (2016) Preparation and CO2 adsorption properties of soft-templated mesoporous carbons derived from chestnut tannin precursors. Micro Meso Mater 222:94–103CrossRefGoogle Scholar
  26. 26.
    Tejado A, Pena C, Labidi J, Echeverria JM, Mondragon I (2007) Physico-chemical characterization of lignins from different sources for use in phenol-formaldehyde resin synthesis. Bio Tech 98:1655–1663CrossRefGoogle Scholar
  27. 27.
    Shi L, Chen K, Du R, Bachmatiuk A, Rummeli MH, Priydarshi MK, Zhang Y, Manivannan A, Liu Z (2015) Direct synthesis of few-layer graphene on NaCl crystals. Small 11:6302–6308CrossRefGoogle Scholar
  28. 28.
    Lu AH, Li WC, Hao GP, Spliethoff B, Bongard HJ, Schaack BB, Schuth F (2010) Easy synthesis of hollow polymer, carbon, and graphitized microspheres. Angew Chem Int Edit 49:1615–1618CrossRefGoogle Scholar
  29. 29.
    Dong Y, Yu M, Wang Z, Liu Y, Wang X, Zhao Z, Qiu J (2016) A top-down strategy toward 3D carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv Funct Mater 26:7590–7598CrossRefGoogle Scholar
  30. 30.
    Campos-Roldan CA, Ramos-Sanchez G, Gonzalez-Huerta RG, Vargas Garcia JR, Balbuena PB, Alonso-vante N (2016) Influence of sp(3)-sp(2) carbon nanodomains on metal/support interaction, catalyst durability, and catalytic activity for the oxygen reduction reaction. ACS Appl Mater Interfaces 8:23260–23269CrossRefGoogle Scholar
  31. 31.
    Yan Y, Yin YX, Guo YG, Wan LJ (2014) A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv Energy Mater 4:1301584CrossRefGoogle Scholar
  32. 32.
    Su D, Cortie M, Wang G (2016) Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv Energy Mater 7:1602014CrossRefGoogle Scholar
  33. 33.
    Dou X, Hasa I, Hekmatfar M, Diemant T, Behm RJ, Buchholz D, Passerini S (2017) Pectin, hemicellulose or lignin? Impact of the biowaste source on the performance of hard carbons for sodium ion batteries. Chemsuschem 10:2668–2676. CrossRefGoogle Scholar
  34. 34.
    Park Y, Shin DS, Woo SH, Choi NS, Shin KH, Oh SM, Lee KT, Hong SY (2012) Sodium terephthalate as an organic anode material for sodium ion batteries. Adv Mater 24:3562–3567CrossRefGoogle Scholar
  35. 35.
    Wang H, Yu W, Mao N, Shi J, Liu W (2016) Effect of surface modification on high-surface-area carbon nanosheets anode in sodium ion battery. Micro Meso Mater 227:1–8CrossRefGoogle Scholar
  36. 36.
    Lotfabad EM, Ding J, Cui K, Kohandehghan A, Kalisvaart WP, Hazelton M, Mitlin D (2014) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8:7115–7129CrossRefGoogle Scholar
  37. 37.
    Qu Y, Zhang Z, Du K, Chen W, Lai Y, Liu Y, Li J (2016) Synthesis of nitrogen-containing hollow carbon microspheres by a modified template method as anodes for advanced sodium-ion batteries. Carbon 105:103–112CrossRefGoogle Scholar
  38. 38.
    Ou J, Yang L, Zhang Z, Xi X (2017) Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Micro Meso Mater 237:23–30CrossRefGoogle Scholar
  39. 39.
    Luo XF, Yang CH, Chang JK (2015) Correlations between electrochemical Na+ storage properties and physiochemical characteristics of holey graphene nanosheets. J Mater Chem A 3:17282–17289CrossRefGoogle Scholar
  40. 40.
    Stevens DA, Dahn JR (2000) High capacity anode materials for rechargeable sodium-ion batteries. J Electrochem Soc 147:1271–1273CrossRefGoogle Scholar
  41. 41.
    Peng XX, Lu YQ, Zhou LL, Sheng T, Shen SY, Liao HG, Huang L, Li JT, Sun SG (2017) Graphitized porous carbon materials with high sulfur loading for lithium–sulfur batteries. Nano Energy 32:503–510CrossRefGoogle Scholar
  42. 42.
    Zhang Y, Chen L, Meng Y, Xie J, Guo Y, Xiao D (2016) Lithium and sodium storage in highly ordered mesoporous nitrogen-doped carbons derived from honey. J Power Sources 335:20–30CrossRefGoogle Scholar
  43. 43.
    Li Z, Huang Y, Yuan L, Hao Z, Huang Y (2015) Status and prospects in sulfur–carbon composites as cathode materials for rechargeable lithium–sulfur batteries. Carbon 92:41–63CrossRefGoogle Scholar
  44. 44.
    Wang HL, Shi ZQ, Jin J, Chong C-B, Wang CY (2015) Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method. J Electroanalyt Chem 755:87–91CrossRefGoogle Scholar
  45. 45.
    Sun Y, Tang J, Zhang K, Yuan J, Li J, Zhu DM, Ozawa K, Qin LC (2017) Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale. 9:2585–2595CrossRefGoogle Scholar
  46. 46.
    Lv X, Song J, Lai Y, Fang J, Li J, Zhang Z (2016) Ultrafine nanoparticles assembled Mo2C nanoplates as promising anode materials for sodium ion batteries with excellent performance. J Energy Storage 8:205–211CrossRefGoogle Scholar
  47. 47.
    Zhang W, Jiang X, Wang X, Kaneti YV, Chen Y, Liu J, Jiang JS, Yamauchi Y, Hu M (2017) Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF crystals. Angew Chem Int Edit 56:8435–8440. CrossRefGoogle Scholar
  48. 48.
    Xiong W, Wang Z, Zhang J, Shang C, Yang M, He L, Lu Z (2017) Hierarchical ball-in-ball structured nitrogen-doped carbon microspheres as high performance anode for sodium-ion batteries. Energy Storage Mater 7:229–235CrossRefGoogle Scholar
  49. 49.
    Liu Y, Zhang N, Liu X, Chen C, Fan LZ, Jiao L (2017) Red phosphorus nanoparticles embedded in porous N-doped carbon nanofibers as high-performance anode for sodium-ion batteries. Energy Storage Mater 9:170–178CrossRefGoogle Scholar
  50. 50.
    Zou G, Hou H, Zhao G, Huang Z, Ge P, Ji X (2017) Preparation of S/N-codoped carbon nanosheets with tunable interlayer distance for high-rate sodium-ion batteries. Green Chem 19:4622–4632CrossRefGoogle Scholar
  51. 51.
    Xia X, Chao D, Zhang Y, Zhan J, Zhong Y, Wang X, Fan HJ (2016) Generic synthesis of carbon nanotube branches on metal oxide arrays exhibiting stable high-rate and long-cycle sodium ion storage. Small 12:3048–3058CrossRefGoogle Scholar
  52. 52.
    Zhang L, Wang M, Lai Y, Li X (2018) Oil/molten salt interfacial synthesis of hybrid thin carbon nanostructures and their composites. J Mater Chem A 6:4988–4996. CrossRefGoogle Scholar
  53. 53.
    Balogun MS, Luo Y, Qiu W, Liu P, Tong Y (2016) A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon 98:162–178CrossRefGoogle Scholar
  54. 54.
    Chen Y, Li J, Lai Y, Xu M, Li J, Wang P, Zhang Z (2018) Engineering anisotropically curved N-doped carbon nanosheets with recyclable binary flux to achieve superior sodium ion storage. Chemsuschem. Google Scholar
  55. 55.
    Balogun MS, Qiu W, Lyu F, Luo Y, Meng H, Li J, Tong Y (2016) All-flexible lithium ion battery based on thermally-etched porous carbon cloth anode and cathode. Nano Energy 26:446–455CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Engineering Research Center of High Performance Battery Materials and DevicesResearch Institute of Central South University in ShenzhenShenzhenChina

Personalised recommendations