Journal of Materials Science

, Volume 53, Issue 13, pp 9742–9754 | Cite as

Air–water interface solar heating using titanium gauze coated with reduced TiO2 nanotubes

  • Chaorui Xue
  • Shengliang Hu
  • Qing Chang
  • Ning Li
  • Yanzhong Wang
  • Wei Liu
  • Jinlong Yang
Energy materials


Using method of electrochemical anodization and subsequent reduction, titanium gauze with reduced TiO2 nanotubes on the surface (reduced TiO2 nanotubes/Ti gauze) was prepared and used for air–water interface solar heating. The electrochemical reduction method can generate Ti3+ and causes the narrowing of optical band gap of TiO2 (ca. 2.91 eV). Combining with the nanotubular structure, reduced TiO2 nanotubes/Ti gauze demonstrated higher absorption ability of visible light than other types of titanium gauzes (reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze and P25 TiO2 nanoparticles/Ti gauze). For evaluating the property of air–water interface solar heating, solar water evaporation test was conducted. The results demonstrated that the reduced TiO2 nanotubes/Ti gauze can efficiently accelerate water evaporation. The water evaporation rate and solar thermal conversion efficiency were 1.41 kg m−2 h−1 and 44.2%, respectively, under solar light irradiation with intensity of 2 kW m−2, which are higher than that of reduced P25 TiO2 nanoparticles/Ti gauze, TiO2 nanotubes/Ti gauze, P25 TiO2 nanoparticles/Ti gauze and pristine Ti gauze. It was further found that the solar thermal conversion efficiency of reduced TiO2 nanotubes/Ti gauze attained 84.2% when solar light intensity increased to 5.6 kW m−2. This work may provide a new route to design more advanced photothermal materials for industrial applications such as waste water treatment, salt production and solar desalination.



This work was supported by the National Natural Science Foundation of China (Grant No. 51602292), Shanxi Province Science Foundation for Youths (Grant No. 201701D221087) and the starting fund for scientific research of North University of China (Grant No. 130082).

Supplementary material

10853_2018_2293_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1477 kb)


  1. 1.
    Neumann O, Urban AS, Day J, Lal S, Nordlander P, Halas NJ (2013) Solar vapor generation enabled by nanoparticles. ACS Nano 7:42–49CrossRefGoogle Scholar
  2. 2.
    Wang Y, Zhang L, Wang P (2016) Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustain Chem Eng 4:1223–1230CrossRefGoogle Scholar
  3. 3.
    Xiao G, Wang X, Ni M, Wang F, Zhu W, Luo Z, Cen K (2013) A review on solar stills for brine desalination. Appl Energy 103:642–652CrossRefGoogle Scholar
  4. 4.
    Sharon H, Reddy KS (2015) A review of solar energy driven desalination technologies. Renew Sustain Energy Rev 41:1080–1118CrossRefGoogle Scholar
  5. 5.
    Li C, Goswami Y, Stefanakos E (2013) Solar assisted sea water desalination: a review. Renew Sustain Energy Rev 19:136–163CrossRefGoogle Scholar
  6. 6.
    Zeng Y, Yao JF, Horri BA, Wang K, Wu YZ, Li D, Wang HT (2011) Solar evaporation enhancement using floating light-absorbing magnetic particles. Energy Environ Sci 4:4074–4078CrossRefGoogle Scholar
  7. 7.
    Wang Z, Liu Y, Tao P, Shen Q, Yi N et al (2014) Bio-inspired evaporation through plasmonic film of nanoparitcles at the air–water interface. Small 10:3234–3239CrossRefGoogle Scholar
  8. 8.
    Zhang L, Tang B, Wu J, Li R, Wang P (2015) Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv Mater 27:4889–4894CrossRefGoogle Scholar
  9. 9.
    Liu G, Xu J, Wang K (2017) Solar water evaporation by black photothermal sheets. Nano Energy 41:269–284CrossRefGoogle Scholar
  10. 10.
    Ghasemi H, Ni G, Marconnet AM, Loomis J, Yerci S, Miljkovic N, Chen G (2014) Solar steam generation by heat localization. Nat Commun 5:4449 (1)–4449 (7)CrossRefGoogle Scholar
  11. 11.
    Liu Y, Yu S, Feng R, Bernard A, Liu Y (2015) A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv Mater 27:2768–2774CrossRefGoogle Scholar
  12. 12.
    Zhou L, Tan Y, Wang J, Xu W, Yuan Y et al (2016) 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat Photon 10:393–398CrossRefGoogle Scholar
  13. 13.
    Liu Y, Chen J, Guo D, Cao M, Jiang L (2015) Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS Appl Mater Interfaces 7:13645–13652CrossRefGoogle Scholar
  14. 14.
    Yao J, Zheng Z, Yang G (2018) Layered tin monoselenide as advanced photothermal conversion materials for efficient solar energy-driven water evaporation. Nanoscale 10:2876–2886CrossRefGoogle Scholar
  15. 15.
    Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRefGoogle Scholar
  16. 16.
    Chen X, Liu L, Huang F (2015) Black titanium dioxide nanomaterials. Chem Soc Rev 44:1861–1885CrossRefGoogle Scholar
  17. 17.
    Li H, Chen Z, Tsang CK, Li Z, Ran X et al (2014) Electrochemical doping of anatase TiO2 in organic electrolytes for high-performance supercapacitors and photocatalysts. J Mater Chem A 2:229–236CrossRefGoogle Scholar
  18. 18.
    Zhang Z, Hedhili MN, Zhu H, Wang P (2013) Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Phys Chem Chem Phys 15:15637–15644CrossRefGoogle Scholar
  19. 19.
    Ye M, Jia J, Wu Z, Qian C, Chen R et al (2017) Synthesis of black TiOx nanoparticles by Mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Adv Energy Mater 7:1601811 (1)–1601811 (7)Google Scholar
  20. 20.
    Zhu G, Xu J, Zhao W, Huang F (2016) Constructing black titania with unique nanocage structure for solar desalination. ACS Appl Mater Interfaces 8:31716–31721CrossRefGoogle Scholar
  21. 21.
    Wang J, Li Y, Deng L, Wei N, Weng Y et al (2017) High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv Mater 29:1603730 (1)–1603730 (6)Google Scholar
  22. 22.
    Wang Z, Ye Q, Liang X, Xu J, Chang C et al (2017) Paper-based membranes on silicon floaters for efficient and fast solar-driven interfacial evaporation under one sun. J Mater Chem A 5:16359–16368CrossRefGoogle Scholar
  23. 23.
    Zhang Y, Zhao D, Yu F, Yang C, Lou J et al (2017) Floating RGO-based black membranes for solar driven sterilization. Nanoscale 9:19384–19389CrossRefGoogle Scholar
  24. 24.
    Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6 V alloy. Surf Interface Anal 27:629–637CrossRefGoogle Scholar
  25. 25.
    Paramasivam I, Jha H, Liu N, Schmuki P (2012) Review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. Small 20:3073–3103CrossRefGoogle Scholar
  26. 26.
    Mills A, Wang J, Crow M (2006) Photocatalytic oxidation of soot by P25 TiO2 films. Chemosphere 64:1032–1035CrossRefGoogle Scholar
  27. 27.
    Macak J, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3:300–304CrossRefGoogle Scholar
  28. 28.
    Sun J, Guo LH, Zhang H, Zhao L (2014) UV irradiation induced transformation of TiO2 nanoparticles in water: aggregation and photoreactivity. Environ Sci Technol 48:11962–11968CrossRefGoogle Scholar
  29. 29.
    Shibata Y, Miyazaki T (2002) Anode glow discharge plasma treatment enhances calcium phosphate adsorption onto Titanium plates. J Dent Res 81:841–844CrossRefGoogle Scholar
  30. 30.
    Valota A, LeClere DJ, Skeldon P, Curioni M, Hashimoto T et al (2009) Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes. Electrochim Acta 54:4321–4327CrossRefGoogle Scholar
  31. 31.
    Xue C, Narushima T, Ishida Y, Tokunaga T, Yonezawa T (2014) Double-wall TiO2 nanotube arrays: enhanced photocatalytic activity and in situ TEM observations at high temperature. ACS Appl Mater Interfaces 6:19924–19932CrossRefGoogle Scholar
  32. 32.
    Rustomji CS, Frandsen CJ, Jin S, Tauber MJ (2010) Dye-sensitized solar cell constructed with titanium mesh and 3D array of TiO2 nanotubes. J Phys Chem B 114:14537–14543CrossRefGoogle Scholar
  33. 33.
    Leonardi S, Russo V, Bassi AL, Fonzo FD, Murray TM et al (2015) TiO2 nanotubes: interdependence of substrate grain orientation and growth rate. ACS Appl Mater Interfaces 7:1662–1668CrossRefGoogle Scholar
  34. 34.
    Wei W, Berger S, Hauser C, Meyer K, Yang M, Schmuki P (2010) Transition of TiO2 nanotubes to nanopores for electrolytes with very low water contents. Electrochem Commun 12:1184–1186CrossRefGoogle Scholar
  35. 35.
    Song J, Zheng M, Yuan X, Li Q, Wang F et al (2017) Electrochemically induced Ti3+ self-doping of TiO2 nanotube arrays for improved photoelectrochemical water splitting. J Mater Sci 52:6976–6986. CrossRefGoogle Scholar
  36. 36.
    Dalton JS, Janes PA, Jones NG, Nicholson JA, Hallam KR, Allen GC (2002) Photocatalytic oxidation of NOx gases using TiO2: a surface spectroscopic approach. Environ Pollut 120:415–422CrossRefGoogle Scholar
  37. 37.
    Kang Q, Cao J, Zhang Y, Liu L, Xu H, Ye J (2013) Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. J Mater Chem A 1:5766–5774CrossRefGoogle Scholar
  38. 38.
    Yang Y, Liao J, Li Y, Cao X, Li N, Wang C, Lin S (2016) Electrochemically self-doped hierarchical TiO2 nanotube arrays for enhanced visible-light photoelectrochemical performance: an experimental and computational study. RSC Adv 6:46871–46878CrossRefGoogle Scholar
  39. 39.
    Anpo M, Che M, Fubini B, Garrone E, Giamello E, Paganini MC (1999) Generation of superoxide ions at oxide surfaces. Top Catal 8:189–198CrossRefGoogle Scholar
  40. 40.
    Xing M, Zhang J, Chen F, Tian B (2011) An economic method to prepare vacuum activated photocatalysts with high photo-activities and photosensitivities. Chem Commun 47:4947–4949CrossRefGoogle Scholar
  41. 41.
    Zheng Z, Huang B, Meng X, Wang J, Wang S et al (2013) Metallic zinc-assisted synthesis of Ti3+ self-doped TiO2 with tunable phases composition and visible-light photocatalytic activity. Chem Commun 49:868–870CrossRefGoogle Scholar
  42. 42.
    Carlson K, Elliott C, Walker S, Misra M, Mohanty S (2016) An effective, point-of-use water disinfection device using immobilized black TiO2 nanotubes as an electrolyst. J Electrochem Soc 163:H395–H401CrossRefGoogle Scholar
  43. 43.
    Hu Z, Zhang X, Liu Z, Huo K, Chu PK, Zhai J, Jiang L (2014) Regulating water adhesion on superhydrophobic TiO2 nanotube arrays. Adv Funct Mater 24:6381–6388CrossRefGoogle Scholar
  44. 44.
    Xue G, Liu K, Chen Q, Yang P, Li J et al (2017) Robust and low-cost flame-treated wood for high-performance solar steam generation. ACS Appl Mater Interfaces 9:15052–15057CrossRefGoogle Scholar
  45. 45.
    Umlauff M, Hoffmann J, Kalt H, Langbein WW, Hvam JM et al (1998) Direct observation of free-exciton thermalization in quantum-well structures. Phys Rev B 57:1390–1393CrossRefGoogle Scholar
  46. 46.
    Elser MJ, Diwald O (2012) Facilitated lattice oxygen depletion in consolidated TiO2 nanocrystal ensembles: a quantitative spectroscopic O2 adsorption study. J Phys Chem C 116:2896–2903CrossRefGoogle Scholar
  47. 47.
    Tian L, Xu J, Just M, Green M, Liu L, Chen X (2017) Broad range energy absorption enabled by hydrogenated TiO2 nanosheets: from optical to infrared and microwave. J Mater Chem C 5:4645–4653CrossRefGoogle Scholar
  48. 48.
    Huo J, Hu Y, Jiang H, Li C (2014) In situ surface hydrogenation synthesis of Ti3+ self-doped TiO2 with enhanced visible light photoactivity. Nanoscale 6:9078–9084CrossRefGoogle Scholar
  49. 49.
    Lee K, Mazare A, Schmuki P (2014) One-dimensional titanium dioxide nanomaterials: nanotubes. Chem Rev 114:9385–9454CrossRefGoogle Scholar
  50. 50.
    Bae K, Kang G, Cho SK, Park W, Kim K, Padilla WJ (2015) Flexible thin-film black gold membranes with ultrobroadband plasmonic nanofocusing for efficient solar vapour generation. Nat Commun 6:10103 (1)–10103 (9)Google Scholar
  51. 51.
    Macak JM, Zlamal M, Krysa J, Schmuki P (2007) Self-organized TiO2 nanotube arrays as highly efficient photocatalysts. Small 3:300–304CrossRefGoogle Scholar
  52. 52.
    Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7:69–71CrossRefGoogle Scholar
  53. 53.
    Rambabu Y, Jaiswal M, Roy SC (2015) Enhanced photoelectrochemical performance of multi-leg TiO2 nanotubes through efficient light harvesting. J Phys D Appl Phys 48:295302 (1)–295302 (9)CrossRefGoogle Scholar
  54. 54.
    Song YY, Schmuki P (2010) Modulated TiO2 nanotube stacks and their use in interference sensors. Electrochem Commun 12:579–582CrossRefGoogle Scholar
  55. 55.
    Hua Z, Li B, Li L, Yin X, Chen K, Wang W (2017) Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evpaoration enhancement. J Phys Chem C 121:60–69CrossRefGoogle Scholar
  56. 56.
    Zhou L, Tan Y, Ji D, Zhu B, Zhang P et al (2016) Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci Adv 2:e1501227 (1)–e1501227 (8)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.School of Energy and Power EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China
  3. 3.School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations