Journal of Materials Science

, Volume 53, Issue 14, pp 10499–10512 | Cite as

Influence of blending zwitterionic functionalized titanium nanotubes on flux and anti-fouling performance of polyamide nanofiltration membranes

  • Chongbin Wang
  • Zhiyuan Li
  • Jianxin Chen
  • Yunlong Zhong
  • Liang Ren
  • Yunping Pu
  • Zhipeng Dong
  • Hong Wu


Organic–inorganic hybrid membranes represent an efficient approach to construct membranes with both improved membrane flux and solute selectivity. Zwitterions bearing equimolar number of anions and cations in one monomer unit exhibit excellent anti-fouling characteristics. Based on the exceptional separation performance of hybrid membrane and fouling resistance feature of zwitterions, a novel nanofiltration membrane was fabricated by incorporating zwitterionic functionalized titanium nanotubes (z-TNTs) into polyamide (PA) layer. The special tubular structure of z-TNTs can provide more and shorter internal channels to shorten flow lanes for water molecules. The zwitterionic functionalization on the titanium nanotubes surface improved not only the interfacial compatibility between nano-materials and polymer matrix but also the antifouling performance of membranes. The water flux of membrane prepared with z-TNTs was up to 220 L m−2 h−1 MPa−1 while the Na2SO4 rejection remained above 90%. The as-prepared z-TNTs/PA membrane exhibited improved anti-fouling property against protein with a notably reduced flux decline ratio.



The work was supported by the National Natural Science Foundation of China (21476059, 21576189 and 21276063), Hebei Science and Technology Support Program (16273101D), the Key Project of Natural Science Foundation of Tianjin (16JCZDJC36500) and Joint Doctoral Training Foundation of HEBUT (2017GN0004).


  1. 1.
    van Reis R, Zydney A (2007) Bioprocess membrane technology. J Membr Sci 297:16–50CrossRefGoogle Scholar
  2. 2.
    Van der Bruggen B, Schaep J, Wilms D et al (1999) Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration. J Membr Sci 156:29–41CrossRefGoogle Scholar
  3. 3.
    Fu H, Kobayashi T (2010) Self-assembly functionalized membranes with chitosan microsphere/polyacrylic acid layers and its application for metal ion removal. J Mater Sci 45:6694–6700. CrossRefGoogle Scholar
  4. 4.
    Wang J, Zhang Y, Zhu J et al (2016) Zwitterionic functionalized layered double hydroxides nanosheets for a novel charged mosaic membrane with high salt permeability. J Membr Sci 510:27–37CrossRefGoogle Scholar
  5. 5.
    Zuo G, Wang R (2013) Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J Membr Sci 447:26–35CrossRefGoogle Scholar
  6. 6.
    Ghanbari M, Emadzadeh D, Lau WJ et al (2015) Super hydrophilic TiO2/HNT nanocomposites as a new approach for fabrication of high performance thin film nanocomposite membranes for FO application. Desalination 371:104–114CrossRefGoogle Scholar
  7. 7.
    Shi Y, Li C, He D et al (2017) Preparation of graphene oxide–cellulose acetate nanocomposite membrane for high-flux desalination. J Mater Sci 52:13296–13306. CrossRefGoogle Scholar
  8. 8.
    Safarpour M, Vatanpour V, Khataee A (2016) Preparation and characterization of graphene oxide/TiO2 blended PES nanofiltration membrane with improved antifouling and separation performance. Desalination 393:65–78CrossRefGoogle Scholar
  9. 9.
    Safarpour M, Vatanpour V, Khataee A et al (2015) Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2. Sep Purif Technol 154:96–107CrossRefGoogle Scholar
  10. 10.
    An QF, Sun WD, Zhao Q et al (2013) Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers. J Membr Sci 431:171–179CrossRefGoogle Scholar
  11. 11.
    Leo CP, Lee WPC, Ahmad AL et al (2012) Polysulfone membranes blended with ZnO nanoparticles for reducing fouling by oleic acid. Sep Purif Technol 89:51–56CrossRefGoogle Scholar
  12. 12.
    Mansouri J, Harrisson S, Chen V (2010) Strategies for controlling biofouling in membrane filtration systems: challenges and opportunities. J Mater Chem 20:4567–4585CrossRefGoogle Scholar
  13. 13.
    Rajaeian B, Heitz A, Tade MO et al (2015) Improved separation and antifouling performance of PVA thin film nanocomposite membranes incorporated with carboxylated TiO2 nanoparticles. J Membr Sci 485:48–59CrossRefGoogle Scholar
  14. 14.
    Liu P, Zhang S, Wang Y et al (2015) Preparation and characterization of thermally stable copoly (phthalazinone biphenyl ether sulfone) hollow fiber ultrafiltration membranes. Appl Surf Sci 335:189–197CrossRefGoogle Scholar
  15. 15.
    Oh SJ, Kim N, Lee YT (2009) Preparation and characterization of PVDF/TiO2 organic–inorganic composite membranes for fouling resistance improvement. J Membr Sci 345:13–20CrossRefGoogle Scholar
  16. 16.
    Shi H, He Y, Pan Y et al (2016) A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. J Membr Sci 506:60–70CrossRefGoogle Scholar
  17. 17.
    Vatanpour V, Madaeni SS, Moradian R et al (2011) Fabrication and characterization of novel antifouling nanofiltration membrane prepared from oxidized multiwalled carbon nanotube/polyethersulfone nanocomposite. J Membr Sci 375:284–294CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Cui M (2016) Porous YxFeyZr1−x−yO2 coated TiO2 solid superacid particles/PVDF hybrid membranes with anti-fouling property. Chem Eng J 301:342–352CrossRefGoogle Scholar
  19. 19.
    Cao X, Ma J, Shi X et al (2006) Effect of TiO2 nanoparticle size on the performance of PVDF membrane. Appl Surf Sci 253:2003–2010CrossRefGoogle Scholar
  20. 20.
    Gao P, Liu J, Zhang T et al (2012) Hierarchical TiO2/CdS “spindle-like” composite with high photodegradation and antibacterial capability under visible light irradiation. J Hazard Mater 229:209–216CrossRefGoogle Scholar
  21. 21.
    Razmjou A, Mansouri J, Chen V (2011) The effects of mechanical and chemical modification of TiO2 nanoparticles on the surface chemistry, structure and fouling performance of PES ultrafiltration membranes. J Membr Sci 378:73–84CrossRefGoogle Scholar
  22. 22.
    Madaeni SS, Ghaemi N (2007) Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation. J Membr Sci 303:221–233CrossRefGoogle Scholar
  23. 23.
    Padaki M, Emadzadeh D, Masturra T et al (2015) Antifouling properties of novel PSF and TNT composite membrane and study of effect of the flow direction on membrane washing. Desalination 362:141–150CrossRefGoogle Scholar
  24. 24.
    Shaban M, AbdAllah H, Said L et al (2013) Fabrication of PES/TiO2 nanotubes reverse osmosis (RO) membranes. J Chem Acta 2:59–61Google Scholar
  25. 25.
    Xin Q, Gao Y, Wu X et al (2015) Incorporating one-dimensional aminated titania nanotubes into sulfonated poly(ether ether ketone) membrane to construct CO2-facilitated transport pathways for enhanced CO2 separation. J Membr Sci 488:13–29CrossRefGoogle Scholar
  26. 26.
    Emadzadeh D, Lau WJ, Rahbari-Sisakht M et al (2015) Synthesis, modification and optimization of titanate nanotubes-polyamide thin film nanocomposite (TFN) membrane for forward osmosis (FO) application. Chem Eng J 281:243–251CrossRefGoogle Scholar
  27. 27.
    Zhang Q, Zhang S, Dai L et al (2010) Novel zwitterionic poly(arylene ether sulfone)s as antifouling membrane material. J Membr Sci 349:217–224CrossRefGoogle Scholar
  28. 28.
    Mi YF, Zhao Q, Ji YL et al (2015) A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance. J Membr Sci 490:311–320CrossRefGoogle Scholar
  29. 29.
    Wang P, Meng J, Xu M et al (2015) A simple but efficient zwitterionization method towards cellulose membrane with superior antifouling property and biocompatibility. J Membr Sci 492:547–558CrossRefGoogle Scholar
  30. 30.
    Zhu J, Tian M, Hou J et al (2016) Surface zwitterionic functionalized graphene oxide for a novel loose nanofiltration membrane. J Mater Chem A 4:1980–1990CrossRefGoogle Scholar
  31. 31.
    Harding JL, Reynolds MM (2014) Combating medical device fouling. Trends Biotechnol 32:140–146CrossRefGoogle Scholar
  32. 32.
    Zhou R, Ren PF, Yang HC et al (2014) Fabrication of antifouling membrane surface by poly(sulfobetaine methacrylate)/polydopamine codeposition. J Membr Sci 466:18–25CrossRefGoogle Scholar
  33. 33.
    Ji YL, An QF, Guo YS et al (2016) Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles. J Mater Chem A 4:4224–4231CrossRefGoogle Scholar
  34. 34.
    Chiang YC, Chang Y, Chuang CJ et al (2012) A facile zwitterionization in the interfacial modification of low bio-fouling nanofiltration membranes. J Membr Sci 389:76–82CrossRefGoogle Scholar
  35. 35.
    Zhao YF, Zhang PB, Sun J et al (2016) Electrolyte-responsive polyethersulfone membranes with zwitterionic polyethersulfone-based copolymers as additive. J Membr Sci 510:306–313CrossRefGoogle Scholar
  36. 36.
    An QF, Sun WD, Zhao Q et al (2013) Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers. J Membr Sci 431:171–179CrossRefGoogle Scholar
  37. 37.
    Zhao W, Su YL, Li C et al (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. J Membr Sci 318:405–412CrossRefGoogle Scholar
  38. 38.
    Wu MY, Ma TY, Su YL et al (2017) Fabrication of composite nanofiltration membrane by incorporating attapulgite nanorods during interfacial polymerization for high water flux and antifouling property. J Membr Sci 544:79–87CrossRefGoogle Scholar
  39. 39.
    Wu HQ, Tang BB, Wu PY (2013) Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles. J Membr Sci 428:341–348CrossRefGoogle Scholar
  40. 40.
    Zhu JA, Su YL, Zhao XT et al (2015) Constructing a zwitterionic ultrafiltration membrane surface via multisite anchorage for superior long-term antifouling properties. RSC Adv 5:40126–40134CrossRefGoogle Scholar
  41. 41.
    Yin YH, Xu T, Shen XH et al (2014) Fabrication of chitosan/zwitterion functionalized titania-silica hybrid membranes with improved proton conductivity. J Membr Sci 469:355–363CrossRefGoogle Scholar
  42. 42.
    Bano S, Mahmood A, Kim SJ et al (2015) Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties. J Mater Chem A 3:2065–2071CrossRefGoogle Scholar
  43. 43.
    Ostuni E, Chapman RG, Holmlin RE et al (2001) A survey of structure–property relationships of surfaces that resist the adsorption of protein. Langmuir 17:5605–5620aCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chongbin Wang
    • 1
    • 2
    • 3
  • Zhiyuan Li
    • 1
  • Jianxin Chen
    • 1
  • Yunlong Zhong
    • 1
  • Liang Ren
    • 1
  • Yunping Pu
    • 1
  • Zhipeng Dong
    • 1
  • Hong Wu
    • 2
    • 3
  1. 1.Engineering Research Center of Seawater Utilization Technology, Ministry of Education, School of Marine Science & EngineeringHebei University of TechnologyTianjinPeople’s Republic of China
  2. 2.Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinPeople’s Republic of China
  3. 3.Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)TianjinPeople’s Republic of China

Personalised recommendations